Skip to main content
Log in

Graphene Nanoplatelet Additives for High C-rate LiFePO4 Battery Cathodes

  • Quantum Materials for Energy-Efficient Computing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets (GNPs) were introduced as conductive additives in the lithium iron phosphate (LiFePO4) composite cathode material through a facile slurry approach to study the effect on battery performance at high current rates (C-rates). The incorporation of GNPs helps to create a flexible three-dimensional conductive network through a plane-to-point connection with the LiFePO4 particles. Comparison electrochemical testing showed that the LiFePO4/GNP cathode exhibited a high specific discharge capacity of ~ 153 mAh g−1 at 0.1C, improved high C-rate performance, and enhanced electrochemical reactivity. The enhanced LiFePO4/GNP battery performance can be attributed to the better electronic transport properties facilitated by the capability of GNP to bridge multiple LFP particles owing to its larger surface area. Our results inform the ongoing effort in finding LiFePO4 cathodes that can perform at high current rates as the demand increases for lithium-ion battery usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010).

    Article  Google Scholar 

  2. J. Dahn, E. Fuller, M. Obrovac, and U. Von Sacken, Solid State Ionics 69, 265 (1994).

    Article  Google Scholar 

  3. J.M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  4. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, J. Am. Chem. Soc. 129, 7444 (2007).

    Article  Google Scholar 

  5. Y.G. Guo, J.S. Hu, and L.J. Wan, Adv. Mater. 20, 2878 (2008).

    Article  Google Scholar 

  6. O.K. Park, Y. Cho, S. Lee, H.C. Yoo, H.K. Song, and J. Cho, Energy Environ. Sci. 4, 1621 (2011).

    Article  Google Scholar 

  7. G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, and H.J. Sohn, Energy Environ. Sci. 4, 1986 (2011).

    Article  Google Scholar 

  8. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Article  Google Scholar 

  9. A.S. Andersson, B. Kalska, L. Häggström, and J.O. Thomas, Solid State Ionics 130, 41 (2000).

    Article  Google Scholar 

  10. M. Takahashi, S.I. Tobishima, K. Takei, and Y. Sakurai, Solid State Ionics 148, 283 (2002).

    Article  Google Scholar 

  11. K. Shiraishi, K. Dokko, and K. Kanamura, J. Power Sources 146, 555 (2005).

    Article  Google Scholar 

  12. L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, and J.M. Tarascon, Chem. Mater. 18, 5520 (2006).

    Article  Google Scholar 

  13. L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, and J.B. Goodenough, Energy Environ. Sci. 4, 269 (2011).

    Article  Google Scholar 

  14. F.Y. Kang, M. Jun, and B.H. Li, New Carbon Mater. 26, 161 (2011).

    Article  Google Scholar 

  15. Y. Hu, M.M. Doeff, R. Kostecki, and R. Fiñones, J. Electrochem. Soc. 151, A1279 (2004).

    Article  Google Scholar 

  16. C. Gong, Z. Xue, S. Wen, Y. Ye, and X. Xie, J. Power Sources 318, 93 (2016).

    Article  Google Scholar 

  17. Y. Liu, X. Li, H. Guo, Z. Wang, W. Peng, Y. Yang, and R. Liang, J. Power Sources 184, 522 (2008).

    Article  Google Scholar 

  18. J. Xu, G. Chen, and X. Li, Mater. Chem. Phys. 118, 9 (2009).

    Article  Google Scholar 

  19. X.Y. Liu, H.J. Peng, Q. Zhang, J.Q. Huang, X.F. Liu, L. Wang, X. He, W. Zhu, and F. Wei, ACS Sustain. Chem. Eng. 2, 200 (2013).

    Article  Google Scholar 

  20. A.A. Adepoju, T.A. Searles, J.A. Fagan, and Q.L. Williams, ECS Trans. 80, 267 (2017).

    Article  Google Scholar 

  21. M. Bhuvaneswari, N. Bramnik, D. Ensling, H. Ehrenberg, and W. Jaegermann, J. Power Sources 180, 553 (2008).

    Article  Google Scholar 

  22. C. Fongy, S. Jouanneau, D. Guyomard, and B. Lestriez, J. Power Sources 196, 8494 (2011).

    Article  Google Scholar 

  23. A.A. Adepoju and Q.L. Williams, Curr. Appl. Phys. 20, 1 (2020).

    Article  Google Scholar 

  24. F.Y. Su, C. You, Y.B. He, W. Lv, W. Cui, F. Jin, B. Li, Q.H. Yang, and F. Kang, J. Mater. Chem. 20, 9644 (2010).

    Article  Google Scholar 

  25. X. Zhou, F. Wang, Y. Zhu, and Z. Liu, J. Mater. Chem. 21, 3353 (2011).

    Article  Google Scholar 

  26. W. Wei, W. Lv, M.B. Wu, F.Y. Su, Y.B. He, B. Li, F. Kang, and Q.H. Yang, Carbon 57, 530 (2013).

    Article  Google Scholar 

  27. W. Kim, W. Ryu, D. Han, S. Lim, J. Eom, and H. Kwon, ACS Appl. Mater. Interfaces 6, 4731 (2014).

    Article  Google Scholar 

  28. W.B. Luo, S.L. Chou, Y.C. Zhai, and H.K. Liu, J. Mater. Chem. A 2, 4927 (2014).

    Article  Google Scholar 

  29. H. Bi, F. Huang, Y. Tang, Z. Liu, T. Lin, J. Chen, and W. Zhao, Electrochim. Acta 88, 414 (2013).

    Article  Google Scholar 

  30. K.S. Dhindsa, B.P. Mandal, K. Bazzi, M. Lin, M. Nazri, G. Nazri, V. Naik, V. Garg, A. Oliveira, and P. Vaishnava, et al., Solid State Ionics 253, 94 (2013).

    Article  Google Scholar 

  31. Q. Fan, L. Lei, X. Xu, G. Yin, and Y. Sun, J. Power Sources 257, 65 (2014).

    Article  Google Scholar 

  32. R. Mo, Z. Lei, D. Rooney, and K. Sun, Electrochim. Acta 130, 594 (2014).

    Article  Google Scholar 

  33. L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z. Zhang, X. Zhang, C. Bi, and G. Cui, Solid State Ionics 181, 1685 (2010).

    Article  Google Scholar 

  34. Y. Wang, Z.S. Feng, J.J. Chen, and C. Zhang, Mater. Lett. 71, 54 (2012).

    Article  Google Scholar 

  35. G. Kucinskis, G. Bajars, and J. Kleperis, J. Power Sources 240, 66 (2013).

    Article  Google Scholar 

  36. W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, and Q.H. Yang, ACS Nano 3, 3730 (2009).

    Article  Google Scholar 

  37. G. Qin, Q. Wu, J. Zhao, Q. Ma, and C. Wang, J. Power Sources 248, 588 (2014).

    Article  Google Scholar 

  38. X. Lei, H. Zhang, Y. Chen, W. Wang, Y. Ye, C. Zheng, P. Deng, and Z. Shi, J. Alloys Compd. 626, 280 (2015).

    Article  Google Scholar 

  39. C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, and T.Y. Tseng, J. Electrochem. Soc. 152, A716 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation PREM (Grant No. 1205608) via the Howard University Partnership for Reduced Dimensional Materials and a Howard University Department of Physics and Astronomy start-up fund. Special thanks to the Army Research Lab (ARL), Adelphi, MD, for access to the Gamry Instruments potentiostat used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinton L. Williams.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adepoju, A.A., Doumbia, M. & Williams, Q.L. Graphene Nanoplatelet Additives for High C-rate LiFePO4 Battery Cathodes. JOM 72, 3170–3175 (2020). https://doi.org/10.1007/s11837-020-04224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04224-2

Navigation