Skip to main content

Advertisement

Log in

A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An ether-functionalized polymeric ionic liquid poly(methyl methacrylate-1-vinyl-3-methoxyl-ethyl-imidazolium bis(trifluoromethanesulfonyl)imide) P(MMA-co-VIm(1O2)) (TFSI) polymeric ionic liquid (PIL) was successfully synthesized, characterized, and used as polymer matrix. The performances of solid polymer electrolytes membrane were measured through blending with poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide ([Pyr13][TFSI]). The ionic conductivity of polymer electrolytes was optimized up to 5.10 × 10−4 S cm−1 at 25 °C, and a wide electrochemical window of 5.23 V vs Li/Li+ could be obtained. Moreover, the polymer electrolytes showed excellent cycle performance for Li/LiFePO4 cell at both 25 °C and 60 °C, demonstrating the capability of being a promising candidate for the application of solid-state lithium-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040

    Article  CAS  Google Scholar 

  2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060

    Article  CAS  Google Scholar 

  3. Zhang X, Chen S, Yu J, Fang D, Zhang S (2016) A double-layered Ge/carbon cloth integrated anode for high performance lithium ion batteries. RSC Adv 6:63414–63417. https://doi.org/10.1039/C6RA12671E

    Article  CAS  Google Scholar 

  4. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8:1702657. https://doi.org/10.1002/aenm.201702657

    Article  CAS  Google Scholar 

  5. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. https://doi.org/10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  7. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  8. Hammami A, Raymond N, Armand M (2003) Runaway risk of forming toxic compounds. Nature 424:635–636. https://doi.org/10.1038/424635b

    Article  CAS  PubMed  Google Scholar 

  9. Lindgren F, Xu C, Niedzicki L, Marcinek M, Gustafsson T, Bjorefors F, Edstrom K, Younesi R (2016) SEI Formation and interfacial stability of a si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries. ACS Appl Mater Interfaces 8:15758–15766. https://doi.org/10.1021/acsami.6b02650

    Article  CAS  PubMed  Google Scholar 

  10. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206. https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  Google Scholar 

  11. Tikekar M, Archer L, Koch D (2016) Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci Adv 2:e1600320. https://doi.org/10.1126/sciadv.1600320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319. https://doi.org/10.1016/0167-2738(94)90419-7

    Article  CAS  Google Scholar 

  13. Li L, Wang F, Li J, Yang X, You J (2017) Electrochemical performance of gel polymer electrolyte with ionic liquid and PUA/PMMA prepared by ultraviolet curing technology for lithium-ion battery. Int J Hydrog Energy 42:12087–12093. https://doi.org/10.1016/j.ijhydene.2017.02.085

    Article  CAS  Google Scholar 

  14. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochim Acta 169:334–341. https://doi.org/10.1016/j.electacta.2015.04.039

    Article  CAS  Google Scholar 

  15. Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749. https://doi.org/10.1016/j.jpowsour.2010.10.089

    Article  CAS  Google Scholar 

  16. Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89. https://doi.org/10.1016/j.memsci.2015.05.021

    Article  CAS  Google Scholar 

  17. Liang YF, Deng SJ, Xia Y, Wang XL, Xia XH, Wu JB, Gu CD, Tu JP (2018) A superior composite gel polymer electrolyte of Li7La3Zr2O12 - poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater Res Bull 102:412–417. https://doi.org/10.1016/j.materresbull.2018.02.051

    Article  CAS  Google Scholar 

  18. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 142:330–336. https://doi.org/10.1016/j.polymer.2018.03.052

    Article  CAS  Google Scholar 

  19. Ma L, Chen S, Li N, Liu Z, Tang Z, Zapien JA, Chen S, Fan J, Zhi C (2020) Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv Mater 32:1908121. https://doi.org/10.1002/adma.201908121

    Article  CAS  Google Scholar 

  20. Feng X, Gao C, Guo Z, Zhou Y, Wang J (2014) Pore structure controllable synthesis of mesoporous poly(ionic liquid)s by copolymerization of alkylvinylimidazolium salts and divinylbenzene. RSC Adv 4:23389–23395. https://doi.org/10.1039/c4ra03163f

    Article  CAS  Google Scholar 

  21. Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159. https://doi.org/10.1039/C6CS00620E

    Article  CAS  PubMed  Google Scholar 

  22. Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195:3668–3675. https://doi.org/10.1016/j.jpowsour.2009.11.146

    Article  CAS  Google Scholar 

  23. Li M, Yang L, Fang S, Dong S, Hirano S, Tachibana K (2011) Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries. J Power Sources 196:8662–8668. https://doi.org/10.1016/j.jpowsour.2011.06.059

    Article  CAS  Google Scholar 

  24. Li M, Yang L, Fang S, Dong S, Hirano S, Tachibana K (2012) Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries. Polym Int 61:259–264. https://doi.org/10.1002/pi.3181

    Article  CAS  Google Scholar 

  25. Wen X, Dong T, Liu A, Zheng S, Chen S, Han Y, Zhang S (2019) A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor. Ionics 25:241–251. https://doi.org/10.1007/s11581-018-2582-7

    Article  CAS  Google Scholar 

  26. Tang J, Muchakayala R, Song S, Meng W, Kumar KN (2016) Effect of EMIMBF 4 ionic liquid addition on the structure and ionic conductivity of LiBF 4 -complexed PVdF-HFP polymer electrolyte films. Polym Test 50:247–254. https://doi.org/10.1016/j.polymertesting.2016.01.023

    Article  CAS  Google Scholar 

  27. Dong T, Zhang S, Zhang L, Chen S, Lu X (2015) Improving cycling performance of LiMn2O4 battery by adding an ester-functionalized ionic liquid to electrolyte. Aust J Chem 68:1911–1917. https://doi.org/10.1071/CH15154

    Article  CAS  Google Scholar 

  28. Jin Y, Fang S, Yang L, Hirano S, Tachibana K (2011) Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery. J Power Sources 196:10658–10666. https://doi.org/10.1016/j.jpowsour.2011.08.008

    Article  CAS  Google Scholar 

  29. Henderson WA, Young VG, Fox DM, De Long HC, Trulove PC (2006) Alkyl vs. alkoxy chains on ionic liquid cations. Chem Commun 35:3708. https://doi.org/10.1039/b606381k

    Article  CAS  Google Scholar 

  30. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49:3603–3611. https://doi.org/10.1016/j.electacta.2004.03.030

    Article  CAS  Google Scholar 

  31. Fang S, Yang L, Wang J, Li M, Tachibana K, Kamijima K (2012) Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochim Acta 54:4269–4273. https://doi.org/10.1016/j.electacta.2009.02.082

    Article  CAS  Google Scholar 

  32. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F (2012) Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 22:18018. https://doi.org/10.1039/C2JM33273F

    Article  CAS  Google Scholar 

  33. Zhao J, Shen X, Yan F, Qiu L, Lee S, Sun B (2011) Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 21:7326–7330. https://doi.org/10.1039/C1JM10346F

    Article  CAS  Google Scholar 

  34. Du C, Ma X, Wu C, Cai M, Hu M, Wang T (2015) Polymerizable ionic liquid copolymer P(MMA-co-BVIm-Br) and its effect on the surface wettability of PVDF blend membranes. Chin J Polym Sci 33:857–868. https://doi.org/10.1007/s10118-015-1634-y

    Article  CAS  Google Scholar 

  35. Cui Z, Xu Y, Zhu L, Wang J, Xi Z, Zhu B (2008) Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 325:957–963. https://doi.org/10.1016/j.memsci.2008.09.022

    Article  CAS  Google Scholar 

  36. Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  37. Kimura K, Matsumoto H, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015) A Quaternarypoly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim Acta 175:134–140. https://doi.org/10.1016/j.electacta.2015.03.117

    Article  CAS  Google Scholar 

  38. Dong T, Zhang J, Xu G, Chai J, Du H, Wang L, Wen H, Zang X, Du A, Jia Q, Zhou X, Cui G (2018) A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ Sci 11:1197–1203. https://doi.org/10.1039/C7EE03365F

    Article  CAS  Google Scholar 

  39. Li C, Qin B, Zhang Y, Varzi A, Passerini S, Wang J, Dong J, Zeng D, Liu Z, Cheng H (2019) Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv Energy Mater 9:1803422. https://doi.org/10.1002/aenm.201803422

    Article  CAS  Google Scholar 

  40. Lu Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer LA (2015) Stable cycling of lithium metal batteries using high transference number electrolytes. Adv Energy Mater 5:1402073. https://doi.org/10.1002/aenm.201402073

    Article  CAS  Google Scholar 

  41. An Y, Cheng X, Zuo P, Liao L, Yin G (2011) The effects of functional ionic liquid on properties of solid polymer electrolyte. Mater Chem Phys 128:250–255. https://doi.org/10.1016/j.matchemphys.2011.03.007

    Article  CAS  Google Scholar 

  42. Liu K, Ding F, Liu J, Zhang Q, Liu X, Zhang J, Xu Q (2016) A cross-linking succinonitrile-based composite polymer electrolyte with uniformly dispersed vinyl-functionalized SiO2 particles for Li-ion batteries. ACS Appl Mater Interfaces 8:23668–23675. https://doi.org/10.1021/acsami.6b05882

    Article  CAS  PubMed  Google Scholar 

  43. Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152:A978–A983. https://doi.org/10.1149/1.1890701

    Article  CAS  Google Scholar 

  44. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262:738–742. https://doi.org/10.1016/j.ssi.2013.08.014

    Article  CAS  Google Scholar 

  45. He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G (2017) Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim Acta 225:151–159. https://doi.org/10.1016/j.electacta.2016.12.113

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Key R&D Program of China (No. 2017YFB0102000), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 21921005), the National Natural Science Foundation of China (No. 51922099), Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-JSC011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suojiang Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, Y., Dong, T., Zhao, Q. et al. A new strategy for enhancing the room temperature conductivity of solid-state electrolyte by using a polymeric ionic liquid. Ionics 26, 4803–4812 (2020). https://doi.org/10.1007/s11581-020-03638-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03638-x

Keywords

Navigation