Skip to main content
Log in

Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

CRISPR-Cas9 is a sophisticated tool in which Cas9/sgRNA complexes bind to the programmed target sequences and induce DNA double-strand breaks (DSBs) enabling highly efficient genome editing. Moreover, when nuclease-inactive Cas9 (dCas9) is employed, its specific DNA-binding activity provides a variety of derivative technologies such as transcriptional activation/repression, epigenome editing, and chromosome visualization. In these derivative technologies, particular effector molecules are fused with dCas9 or recruited to the target site. However, there had been room for improvement, because both genome editing and derivative technologies require not only the DNA-binding tools but also the additional components for their efficient and flexible outcomes. For genome editing, DSB repair molecules and knock-in donor templates need to act at the DSB sites. Derivative technologies also require their various effector domains to be gathered onto the target sites. Recently, many groups have developed and utilized inventive platforms to accumulate these additional components to the target sequence by modifying Cas9 protein and/or sgRNA. Here, we summarize the strategies of CRISPR-based effector accumulation and the improved methodologies using these creative platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, Tanaka K (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17(1):979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aird EJ, Lovendahl KN, St Martin A, Harris RS, Gordon WR (2019) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1:54

    Article  CAS  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos TJ, Nussbacher JK, Aigner S, Yeo GW (2016) Tethered function assays as tools to elucidate the molecular roles of RNA-binding proteins. Adv Exp Med Biol 907:61–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun SMG, Kirkland JG, Chory EJ, Husmann D, Calarco JP, Crabtree GR (2017) Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat Commun 8(1):560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun 8(1):1711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9(1):1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ, Cecchi RJ, Kowal EJK, Buchthal J, Housden BE, Perrimon N, Collins JJ, Church G (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13(7):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zou W, Xu H, Liang Y, Huang B (2018) Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9(1):5065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wei M, Liu X, Song S, Wang L, Yang X, Song Y (2019) Construction and validation of the CRISPR/dCas9-EZH2 system for targeted H3K27Me3 modification. Biochem Biophys Res Commun 511(2):246–252

    Article  CAS  PubMed  Google Scholar 

  • Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio:a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26(2):254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherif K, Gérard C, Rousseau J, Ouellet DL, Chapdelaine P, Tremblay JP (2018) Increased Frataxin expression induced in Friedreich ataxia cells by Platinum TALE-VP64s or Platinum TALE-SunTag. Mol Ther Nucleic Acids 12:19–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Sekine S, Pessino V, Li H, Leonetti MD, Huang B (2017) Improved split fluorescent proteins for endogenous protein labeling. Nat Commun 8(1):370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng S, Varshney A, Coto Villa D, Modavi C, Kohler J, Farah F, Zhou S, Ali N, Müller JD, Van Hoven MK, Huang B (2019) Bright split red fluorescent proteins for the visualization of endogenous proteins and synapses. Commun Biol 2:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajian R, Balderston S, Tran T, deBoer T, Etienne J, Sandhu M, Wauford NA, Chung JY, Nokes J, Athaiya M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K (2019) Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 3(6):427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE (2018) CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560(7717):248–252

    Article  CAS  PubMed  Google Scholar 

  • Hattman S (1999) Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon. Pharmacol Ther 84(3):367–388

    Article  CAS  PubMed  Google Scholar 

  • Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC (2018) Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13(12):1036–1042

    Article  CAS  Google Scholar 

  • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, Jeong M, Li W, Goodell MA (2017) DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18(1):176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, Ishikawa H, Leonetti MD, Marshall WF, Weissman JS, Huang B (2016) Versatile protein tagging in cells with split fluorescent protein. Nat Commun 7:11046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588

    Article  CAS  PubMed  Google Scholar 

  • Kunii A, Hara Y, Takenaga M, Hattori N, Fukazawa T, Ushijima T, Yamamoto T, Sakuma T (2018) Three-component repurposed technology for enhanced expression (TREE):highly accumulable transcriptional activators via branched tag arrays. CRISPR J 1:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, Núñez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171(7):1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling X, Xie B, Gao X, Chang L, Zheng W, Chen H, Huang Y, Tan L, Li M, Liu T (2020) Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv 6(15):eaaz0051

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W (2019) Methodologies for improving HDR efficiency. Front Genet 9:691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu P, Chen M, Liu Y, Qi LS, Ding S (2018) CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22(2):252–261

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Peng S, Huang W, Cai Z, Xie Z (2018a) Rational design of mini-Cas9 for transcriptional activation. ACS Synth Biol 7(4):978–985

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018b) CRISPR-Sirius:RNA scaffolds for signal amplification in genome imaging. Nat Methods 15(11):928–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34(5):528–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res 27(4):578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, Yamamoto T, Serikawa T (2013) Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep 3:1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masuyama N, Mori H, Yachie N (2019) DNA barcodes evolve for high-resolution cell lineage tracing. Curr Opin Chem Biol 52:63–71

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–114

    Article  CAS  PubMed  Google Scholar 

  • Morgan SL, Mariano NC, Bermudez A, Arruda NL, Wu F, Luo Y, Shankar G, Jia L, Chen H, Hu JF, Hoffman AR, Huang CC, Pitteri SJ, Wang KC (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8:15993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Nakade S, Mochida K, Kunii A, Nakamae K, Aida T, Tanaka K, Sakamoto N, Sakuma T, Yamamoto T (2018) Biased genome editing using the local accumulation of DSB repair molecules system. Nat Commun 9(1):3270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Sakuma T, Nishimichi N, Yokosaki Y, Takeo T, Nakagata N, Yamamoto T (2017) Culture time of vitrified/warmed zygotes before microinjection affects the production efficiency of CRISPR-Cas9-mediated knock-in mice. Biol Open 6(5):706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamae K, Nishimura Y, Takenaga M, Nakade S, Sakamoto N, Ide H, Sakuma T, Yamamoto T (2017) Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO. Bioengineered 8(3):302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729

    Article  PubMed  CAS  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter CJ, Saito A, Hasegawa Y, Tanaka Y, Nagpal M, Perez G, Alway E, Espeso-Gil S, Fayyad T, Ratner C, Dincer A, Gupta A, Devi L, Pappas JG, Lalonde FM, Butman JA, Han JC, Akbarian S, Kamiya A (2019) In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 10(1):4112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petri K, Pattanayak V (2018) SHERLOCK and DETECTR open a new frontier in molecular diagnostics. CRISPR J 1:209–211

    Article  PubMed  Google Scholar 

  • Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Xu Z, Zhang M, Zhang D, Fan H, Li T, Wang Q, Liu P, Zhu Z, Du D, Tan M, Wen B, Liu Y (2019) Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acid Res 47(9):e52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees HA, Yeh WH, Liu DR (2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10(1):2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuma T, Takenaga M, Kawabe Y, Nakamura T, Kamihira M, Yamamoto T (2015) Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10):23849–23866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma T, Yamamoto T (2017) Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol 33(6):501–505

    Article  PubMed  Google Scholar 

  • Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 29:7

    Google Scholar 

  • Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12(7):664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Izpisua Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghbalout A, Du M, Jillette N, Rosikiewicz W, Rath A, Heinen CD, Li S, Cheng AW (2019) Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat Commun 10(1):4296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H (2017) Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res 45(9):5198–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truong VA, Hsu MN, Kieu Nguyen NT, Lin MW, Shen CC, Lin CY, Hu YC (2019) CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res 47(13):e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ogé L, Perez-Garcia MD, Hamama L, Sakr S (2018) The PUF protein family: overview on PUF RNA targets, biological functions, and post transcriptional regulation. Int J Mol Sci 19(2):E410

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cheong CG, Hall TM, Wang Z (2009) Engineering splicing factors with designed specificities. Nat Methods 6(11):825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu GL, Hu R (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2):339–350

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang W, Shan L, Han L, Ma S, Zhang Y, Hao B, Lin Y, Rong Z (2018) Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9(4):380–383

    CAS  PubMed  Google Scholar 

  • Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X, Sun Y, Wei Y, Liu F, Ying W, Zhang J, Tang C, Zhang X, Xu H, Shi L, Cheng L, Huang P, Yang H (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci 21(3):440–446

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by grants from the Japan Society for the Promotion of Science (19K16111 to T.S. and 17H01409 to T.Y. and T.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Sakuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunii, A., Yamamoto, T. & Sakuma, T. Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cell.Dev.Biol.-Animal 56, 359–366 (2020). https://doi.org/10.1007/s11626-020-00469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00469-y

Keywords

Navigation