Skip to main content
Log in

Mapping quantitative trait loci for resistance to watermelon bud necrosis orthotospovirus in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] is an important cucurbit crop cultivated worldwide. In an effort to map WBNV resistance, the current study consisted of two populations derived from a WBNV resistant accession, IIHR-82 belonging to Citrullus lanatus var. citroides (Syn. Citrullus amarus). The first population is a backcross inbred population (BC1F6) of 141 families (Pop I) that was developed by crossing IIHR-82 to an elite cultivar Arka Manik. A resistant family, BIL-53 belonging to Pop I was crossed to IIHR-140 to develop F3 population, consisting of 112 families (Pop II). Each of these populations was evaluated for WBNV incidence for two years under natural epiphytotic conditions. A significant correlation was observed for various resistance traits across years and populations. The frequency distribution graphs of Area Under Disease Progress Curve for WBNV incidence in both the populations exhibited a continuous distribution, indicating that trait is quantitative in nature. A total of 163 markers were mapped for the Pop I which spread onto 15 linkage groups (LGs) spanning a total map length of 3310.17 cM with a mean marker interval of 20.31 cM. The linkage map for the Pop II was constructed with 135 markers spread over 12 linkage groups spanning a total length of 1965.53 cM with an average interval between markers of 14.56 cM.The QTL analysis for WBNV resistance related traits revealed 14 major QTL's for Pop I and 19 for Pop II with a maximum PVE upto 21.20%. Multi-trait QTL regions were observed on LG 3b for Pop I and LG 2, LG 4, LG 7 and LG 8 for Pop II. Importantly, we observed common QTL regions for plant survival on LG 2 and PDI on LG 3 and LG 8 for both the populations. As this is the first attempt to map QTL's for WBNV resistance, the results obtained in the present study may provide a guide for fine mapping multi-trait QTL regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MJ, Lefkowitz EJ, King AM, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Arch Virol 162:2505–2538

    CAS  Google Scholar 

  • Anonymous (2012) Cucurbit Genomics Database. Available at https://www.icugi. org

  • Branham SE, Wechter WP, Ling KS, Chanda B, Massey L, Zhao G, Guner N, Bello M, Kabelka E, Fei Z, Levi A (2019) QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus.Theor Appl Genet. https://doi.org/10.1007/s00122-019-03500-3

    Article  PubMed  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, Baloch AW, Zhang Y (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hort 202:25–31. https://doi.org/10.1016/j.scienta.2016.01.004

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572. https://doi.org/10.1098/rstb.2007.2170

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908. https://doi.org/10.1038/s41598-018-21293-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou J, Zhao S, Lu X, He N, Zhang L, Ali A, Kuang H, Liu W (2018) Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet. https://doi.org/10.1007/s00122-018-3050-5

    Article  PubMed  Google Scholar 

  • FAO (2016) Food and Agricultural organization (https://www.faostat.fao.org), Rome, Italy. Retrived 10 Febraury 2018

  • Gimode W, Clevenger J, McGregor C (2020) Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Mol Breed 40:3

    CAS  Google Scholar 

  • Guo S, Xu Y, Zhang H, Gong G, Huang S, Yi H, Wu M, Zheng Y, Fei Z (2010) Latest advances in watermelon genomics (In Proceedings of the 4th IS on Cucurbits Ed.: Xiaowu Sun). Acta Hort 871:599–606

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    CAS  PubMed  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51:1616-1623

    Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785

    CAS  PubMed  Google Scholar 

  • Hawkins LK, Hawkins TL, Rhodes BB, Jarret RL (2001) Linkage Mapping in a Watermelon Population Segregating for Fusarium Wilt Resistance. J Amer Soc Hort Sci 126(3):344–350

    CAS  Google Scholar 

  • Hobbs HA, Reddy DVR, Rajeshwari R, Reddy AS (1987) Use of direct antigen coating and protein A coating ELISA procedures for detection of three peanut viruses. Plant Dis 71:747–749

    Google Scholar 

  • Holkar SK, Kumar R, Yogita M, Katiyar A, Jain RK, Mandal B (2017) Diagnostic assays for two closely related tospovirus species, watermelon bud necrosis virus and groundnut bud necrosis virus and identification of new natural hosts. J Plant Biochem Biotechnol 26:43–51

    CAS  Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus tomato spotted wilt virus in Capsicum spp. and Its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant-Microbe Interact 13(6):673–682

    CAS  PubMed  Google Scholar 

  • Jain RK, Bag S, Umamaheswaran K, Mandal B (2007) Natural infection by tospoviruses of cucurbitaceous and fabaceous vegetable crops in India. J Phytopathol 155:22–25

    CAS  Google Scholar 

  • Jain RK, Mandal B, Pappu HR, Holkar, SK (2015) ICTV Taxonomic Proposal 2014. 005aV. A. v2. Tospovirus_sp. Create 1 New Species in the Genus Tospovirus, Family Bunyaviridae. https://www.ictvonline.org/proposals-14/2014

  • Jain RK, Pappu HR, Pappu SS, Krishnareddy M, Vani A (1998) Watermelon bud necrosis tospovirusis a distinct virus species belonging to serogroup IV. Arch Virol 143:1637–1644

    CAS  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0 An extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    CAS  PubMed  Google Scholar 

  • Keb-Llanes M, Gonzalez G, Chi B, Infante D (2002) A rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Mol Biol Rep 20:299–303

    Google Scholar 

  • Khera P, Pandey MK, Wang H, Feng S, Qiao L, Culbreath AK, Kale S, Wang J, Holbrook CC, Zhuang W, Varshney RK, Guo B (2016) Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE 11(7):e0158452. https://doi.org/10.1371/journal.pone.0158452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Hwang JH, Han DY, Park M, Kim S, Choi D, Kim Y, Lee GP, Kim ST, Park YH (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE 10(12):e0145665

    PubMed  PubMed Central  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Google Scholar 

  • Kumar NKK, Venkatesh N, Kalleshwaraswamy CM, Ranganath HR (2006) Seasonal incidence of thrips and bud necrosis virus on watermelon. Pest Man Hort Ecosyst 12(2):85–92

    Google Scholar 

  • Kumar R, Mandal B, Geetanjali AS, Jain RK, Jaiwal PK (2010) Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus. Arch Virol 155:1361–1365

    CAS  PubMed  Google Scholar 

  • Kunkalikar SR, Sudarsana P, Arun BM, Rajagopalan P, Chen TC, Yeh SD, Naidu RA, Zehr UB, Ravi KS (2011) Importance and genetic diversity of vegetable-infecting tospoviruses in India. Phytopathology 101:367–376

    PubMed  Google Scholar 

  • Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, Massey L, Levi A (2014) A major QTL associated with Fusarium oxysporum race1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet 127:2105–2115

    CAS  PubMed  Google Scholar 

  • Lee HJ, Cho HJ, Lee KA, Lee MS, Shin YS, Harn CH, Yang SG, Nahm SH (2007) Development of sequence-based dna markers for evaluation of phylogenetic relationships in Korean watermelon varieties. J Crop Sci Biotech 10(2):98–105

    Google Scholar 

  • Levi A, Thies JA, Wechter WP, Harrison HW, Simmons AM, Reddy UK, Nimmakayala P, Fei Z (2013) High frequency oligonucleotides:targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60:427–440

    CAS  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Res Crop Evol 48:559–566

    Google Scholar 

  • Levi A, Thomas CE, Trebitsh T, Salman A, King J, Karaliaus J, Newman M, Reddy OUK, Xu Y, Zhang X (2006) An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR and RAPD markers. J American Soc Hort Sci 131(3):393–402

    CAS  Google Scholar 

  • Levi A, Thomas CE, Zhang X, Joobeur T, Davis A (2002) A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides × C. lanatus var. lanatus) × Citrullus colocynthis. Theor Appl Genet 105(4):555–563

    CAS  Google Scholar 

  • Levi A, Thomas CE, Zhang X, Joobeur T, Dean RA, Wehner TC, Carle BR (2001b) A genetic linkage map for watermelon based on Randomly Amplified polymorphic DNA (RAPD) markers. J Amer Soc Hort Sci 126:730–737

    CAS  Google Scholar 

  • Levi A, Wechter P, Massey L, Carter L, Hopkins D (2011) An extended genetic linkage map for watermelon based on a testcross and a BC2F2 population. American J Plant Sci 2:93–110

    CAS  Google Scholar 

  • Liu S, Gao P, Wang X, Davis AR, Baloch AM, Luan F (2015) Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica 202(3):411–426

    CAS  Google Scholar 

  • MAFW (2017) Horticultural Statistics at a Glance 2017 (https://agricoop.nic.in) Horticulture Statistics Division, Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India

  • Mandal B, Jain RK, Chaudhary V, Varma A (2003) First report of natural infection of Luffa acutangula by Watermelon bud necrosis virus in India. Plant Dis 87:598

    CAS  PubMed  Google Scholar 

  • Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR (2012) Emerging problems of Tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Dis 96(4):468–479

    CAS  PubMed  Google Scholar 

  • Maule AJ, Caranta C, Boulton MI (2007) Sources of natural resistance to plant viruses: status and prospects. Mol Plant Pathol 8(2):223–231

    CAS  PubMed  Google Scholar 

  • Nagesh GC, Rao ES, Pitchaimuthu M, Varalakshmi B, Lakshmana Reddy DC, Samuel DK, Rekha A, Krishna Reddy M (2018) Genetic analysis of resistance to watermelon bud necrosis orthotospovirus in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Plant Breed 137:814–822. https://doi.org/10.1111/pbr.12639

    Article  CAS  Google Scholar 

  • Nimmakayala P, Abburi VL, Bhandary A, Abburi L, Vajja VG, Reddy R, Malkaram S, Venkatramana P, Wijeratne A, Tomason YR, Levi A, Wehner TC, Reddy UK (2014) Use of Vera Code 384-plex assays for watermelon diversity analysis and integrated genetic map of watermelon with single nucleotide polymorphisms and simple sequence repeats. Mol Breed 34:537–548

    CAS  Google Scholar 

  • Park SW, Kim KT, Kang SC, Yang HB (2016) Rapid and practical molecular marker development for rind traits in watermelon. Hort Env Biotech 57:385–391

    CAS  Google Scholar 

  • Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SP, McGregor C (2012) Mapping of the egusi seed trait locus (eg) and quantitative trait loci associated with seed oil percentage in watermelon. J American Soc Hort Sci 137(5):311–315

    Google Scholar 

  • Rajasekharam T (2010) Biological and molecular characterization and management of Watermelon bud necrosis virus. Ph. D Thesis, UAS, Dharawad

  • Rebijith KB, Asokan R, Hande HR, Kumar NK (2016) The first report of miRNAs from a thysanopteran insect, Thrips palmi Karny using high-throughput sequencing. PLoS ONE 11:e0163635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebijith KB, Asokan R, Krishna Kumar NK, Krishna V, Ramamurthy VV (2012) Development of species-specific markers and molecular differences in mtDNA of Thrips palmi Karny and Scirtothrips dorsalis Hood (Thripidae: Thysanoptera), vectors of tospoviruses Bunyaviridae) in India. Entomol News 122:201–213

    Google Scholar 

  • Reddy U, Aryal N, Islam-Faridi N, Tomason Y, Levi A, Nimmakayala P (2013) Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol 60(7):2091–2100. https://doi.org/10.1007/s10722-013-9976-1

    Article  CAS  Google Scholar 

  • Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, Vajja G, Reddy R, Abburi L, Wehner TC, Ronin Y, Karol A (2014) High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3 4(11):2219–2230

    PubMed  Google Scholar 

  • Ren R, Ray R, Li P, Xu J, Zhang M, Liu G, Yao X, Kilian A, Yang X (2015a) Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Mol Genet Genom 290:1457–1470

    CAS  Google Scholar 

  • Ren Y, Jiao D, Gong G, Zhang H, Guo S, Zhang J, Xu Y (2015b) Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Mol Breeding 35:183–191

    Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:1471–2229

    Google Scholar 

  • Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, Hou W, Zou X, Sun H, Gong G, Levi A, Xu Y (2012) A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome. PLoS ONE 7(1):1–10

    Google Scholar 

  • Riley DG, Pappu HR (2000) Evaluation of tactics for management of thrips-vectored Tomato spotted wilt virus in tomato. Plant Dis 84(8):847–852

    CAS  PubMed  Google Scholar 

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK, White V, Chan E, Tolla G, White C, Safran D, Graham E, Knapp S, McGregor C (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Theor Appl Genet 125:1603–1618

    PubMed  Google Scholar 

  • Shang J, Li N, Li N, Xu Y, Ma S, Wang J (2016) Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Sci Hort 203:38–46

    CAS  Google Scholar 

  • Singh SJ, Krishnareddy M (1996) Watermelon bud necrosis: new Tospovirus disease. Acta Hort 431:68–77

    Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    CAS  PubMed  Google Scholar 

  • Sugiyama M, Kawazu Y, Fukino N, Yoshioka Y, Shimomura K, Sakata Y, Okuda M (2015) Mapping of quantitative trait loci for Melon yellow spot virus resistance in cucumber (Cucumis sativus L.). Euphytica 205:615–625

    CAS  Google Scholar 

  • Sugiyama M, Okuda M, Sakata Y (2009) Evaluation of resistance to melon yellow spot virus in a cucumber germplasm collection. Plant Breeding 128:696–700

    Google Scholar 

  • Sun X, Mumm RH (2016) Method to represent the distribution of QTL additive and dominance effects associated with quantitative traits in computer simulation. BMC Bioinform 17:73. https://doi.org/10.1186/s12859-016-0906-z

    Article  CAS  Google Scholar 

  • Wang C, Qiao A, Fang X, Sun L, Peng P, Davis AR, Liu S, Luan F (2019) Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon (Citrullus lanatus). Front Plant Sci 10:1240. https://doi.org/10.3389/fpls.2019.01240

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Li H, Zhang L, Meng L (2016) Users manual of QTL IciMapping. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China, and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico, p 274

  • Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L, Patel T, Ortiz C, Abburi V, Nimmakayala P, Branham S, Wechter P, Massey L, Ling KS, Kousik C, Hammar S, Tadmor Y, Portnoy V, Fei Z (2019) Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1365 accessions in the U. S. National Plant Germplasm System watermelon collection. Plant Biotech J 17(12):2246–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang H, Guo S, Ren Y, Gong G, Weng Y, Xu Y (2012) Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon (Citrullus lanatus Thunb. Matsum Nakai). Euphytica 186(2):329–342

    CAS  Google Scholar 

  • Zhang R, Xu Y, Yi K, Zhang H, Liu L, Gong G, Levi A (2004) A genetic linkage map for watermelon derived from recombinant inbred lines. J American Soc Hort Sci 129:237–324

    CAS  Google Scholar 

  • Zhang Z, Zhang Y, Sun L, Qiu G, Sun Y, Zhu Z, Luan F, Wang X (2018) Construction of a genetic map for Citrullus lanatus based on CAPS markers and mapping of three qualitative traits. Sci Hort 233:532–538

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Social Justice and Empowerment, Government of India, for providing the Ph.D fellowship for first author and Department of Biotechnology, Government of India, for funding the program.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ESR; NGC, TRN, SKM and MR performed the experiments with assistance from MKR for phenotyping; LRDC for genotyping; AR for viral diagnostic assays; ESR and NGC wrote the paper. All the authors have discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. S. Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagesh, G.C., Thontadarya, R.N., Swamy, K.M. et al. Mapping quantitative trait loci for resistance to watermelon bud necrosis orthotospovirus in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Euphytica 216, 104 (2020). https://doi.org/10.1007/s10681-020-02632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02632-8

Keywords

Navigation