Skip to main content

Advertisement

Log in

An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Considering the ever-increasing landslide incidences in Indian Himalayas, a methodology has been presented to assess the risk to buildings constructed in the landslide-prone areas. Since landslide is a dynamic phenomenon, an inter-disciplinary approach is required for the assessment of elements at risk (buildings in this case). Therefore, a novel remote sensing and GIS-based semi-quantitative technique has been developed by integrating the concepts of landslide susceptibility zonation (LSZ), physical vulnerability (PV) and the proximity (Prox) of buildings from the influence zone (i.e. LSZ and drainage channels). In order to understand the acceptability of risk, the landslide risk (LR) has been categorized into three risk classes as class I (low risk), class II (moderate risk) and class III (high risk). This study aims to develop a systematic and easy to adopt methodology for hilly terrains of India in a scenario of historical data scarcity and also in line with the codal provisions of the country as well as the geographical conditions. The developed methodology is implemented in a test site of Gopeshwar Township, Chamoli District Headquarter, Uttarakhand State of India, covering an area of 8.39 km2 situated in the upper Alaknanda valley. This study will be useful in increasing the safety aspects of the infrastructures and lives and also for strategic governance of developmental activities in the times ahead, especially in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdulwahid, W. M., & Pradhan, B. (2016). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.

    Google Scholar 

  • Adiguzel, F., Cetin, M., Kaya, E., Simsek, M., Gungor, S., & Bozdogan Sert, E. (2019). Defining suitable areas for bioclimatic comfort for landscape planning and landscape management in Hatay, Turkey. Theoretical and Applied Climatology, 139(3–4), 1493–1503.

    Google Scholar 

  • AGS (Australian Geomechanics Society Sub-Committee on Landslide Risk Management). (2000). Landslide risk management concepts and guidelines. Australian Geomechanics Journal, 35, 49–92.

    Google Scholar 

  • AGS (Australian Geomechanics Society Sub-Committee on Landslide Risk Management). (2007). A national landslide risk management framework for Australia. Australian Geomechanics Journal, 42(1), 1–12.

    Google Scholar 

  • Ahmed, S. (2009). Slope stability analysis using GIS and numerical modeling techniques. Unpublished MSc thesis, Vrije Universiteit, Brussel.

  • Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269–277.

    Google Scholar 

  • Anbalagan, R., & Singh, B. (1996). Landslide hazard and risk assessment mapping of mountainous terrains—A case study from Kumaon Himalaya, India. Engineering Geology, 43, 237–246.

    Google Scholar 

  • Balamurugan, G., Ramesh, V., & Touthang, M. (2016). Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. Natural Hazards, 84, 465–488.

    Google Scholar 

  • Basu, T., & Pal, S. (2018). Identification of landslide susceptibility zones in Gish River basin, West Bengal, India. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12(1), 14–28.

    Google Scholar 

  • Bednárik, M., Yilmaz, I., & Marschalko, M. (2012). Landslide hazard and risk assessment: A case study from the Hlohovec–Sered’ landslide area in south-west Slovakia. Natural Hazards, 64(1), 547–575.

    Google Scholar 

  • Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides—Examples from Bíldudalur, NW-Iceland. Natural Hazards Earth System Sciences, 4, 117–131.

    Google Scholar 

  • BMTPC. (2019). Landslide hazard zonation atlas of India. Building Materials and Technology Promotion Council: Government of India and Anna University, Chennai.

    Google Scholar 

  • Bogget, A. D., Mapplebeck, N. J., & Cullen, R. J. (2000). South Shores Cliffs, Whitehaven-geomorphological survey and emergency cliff stabilisation works. Quarterly Journal of Engineering Geology and Hydrogeology, 33, 213–226.

    Google Scholar 

  • Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., et al. (2002). A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards Earth System Sciences, 2, 57–72.

    Google Scholar 

  • Catani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale. Landslides, 2, 329–342.

    Google Scholar 

  • Cetin, M., Adiguzel, F., Gungor, S., Kaya, E., & Sancar, M. C. (2019). Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Quality, Atmosphere and Health, 12(9), 1103–1112.

    CAS  Google Scholar 

  • Chau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., & Chan, L. C. P. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30, 429–443.

    Google Scholar 

  • Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12, 340–350.

    Google Scholar 

  • Chowdhury, R., & Flentje, P. (2003). Role of slope stability analysis in landslide risk management. Bulletin of Engineering Geology and Environment, 62, 41–46.

    Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.

    Google Scholar 

  • Corominas, J., Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and Environment, 73(2), 209–263.

    Google Scholar 

  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87.

    Google Scholar 

  • Das, I., Kumar, G., Stein, A., Bagchi, A., & Dadhwal, V. K. (2011). Stochastic landslide vulnerability modeling in space and time in a part of the Northern Himalayas, India. Environmental Monitoring and Assessment, 178, 25–37.

    Google Scholar 

  • Dhakal, A. S., Amada, T., & Aniya, M. (2000). Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Engineering & Remote Sensing, 66(8), 981–989.

    Google Scholar 

  • Fabera, M. H., & Stewart, M. G. (2003). Risk assessment for civil engineering facilities: Critical overview and discussion. Reliability Engineering and System Safety, 80, 173–184.

    Google Scholar 

  • Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.

    Google Scholar 

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). On behalf of the JTC-1 joint technical committee on landslides and engineered slopes: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102, 85–98.

    Google Scholar 

  • Fell, R., & Hartford, D. (1997). Landslide risk management. In D. Cruden & R. Fell (Eds.), Landslide risk assessment (pp. 51–119). Honolulu: Balkema.

    Google Scholar 

  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards Earth System Sciences, 18, 2161–2181.

    Google Scholar 

  • Garcia, R. A. C., Oliveira, S. C., & Zêzere, J. L. (2016). Assessing population exposure for landslide risk analysis using dasymetric cartography. Hazards Earth System Sciences, 16, 2769–2782.

    Google Scholar 

  • Ghosh, S., Van Westen, C. J., Carranza, E. J., Ghoshal, T. B., Sarkar, N. K., & Surendranath, M. (2009). A quantitative approach for improving the BIS (Indian) method of medium scale landslide susceptibility. Journal Geological Society India, 74, 625–638.

    Google Scholar 

  • Ghosh, S., Van Westen, C. J., Carranza, E. J., & Jetten, V. G. (2012). Integrating spatial, temporal and magnitude probabilities for medium-scale landslide risk analysis in Darjeeling Himalayas, India. Landslides, 9, 371–384.

    Google Scholar 

  • Glade, T., & Crozier, M. J. (2005). The nature of landslide hazard and impact. In T. Glade, M. G. Anderson, & M. J. Crozier (Eds.), Landslide hazard and risk (pp. 43–74). Chichester: Wiley.

    Google Scholar 

  • Government of Uttarakhand, India. https://chamoli.gov.in/geography. Retrieved on March 31, 2019.

  • Guillard-Gonçalves, C., Zêzere, J. L., Pereira, S., & Garcia, R. A. C. (2016). Assessment of physical vulnerability of buildings and analysis of landslide risk at the municipal scale: Application to the Loures municipality, Portugal. Natural Hazards Earth System Sciences, 16, 311–331. https://doi.org/10.5194/nhess-16-311-2016.

    Article  Google Scholar 

  • Gupta, R. P., & Joshi, B. C. (1990). Landslide Hazard Zonation using the GIS Approach—A case Study from the Ramganga Catchment, Himalayas. Engineering Geology, 28, 119–131.

    Google Scholar 

  • Guri, P. K., Champatiray, P. K., & Patel, R. C. (2015). Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Environmental Monitoring Assessment, 187, 324. https://doi.org/10.1007/s10661-015-4535-1.

    Article  Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1–4), 181–216.

    Google Scholar 

  • Hughes, A., Hewlett, H., Samuels, P. G., Morris, M., Sayers, P., Moffat, I., et al. (2000). Risk management for UK reservoirs. CIRIA C542. London: Construction Industry Research and Information Association.

    Google Scholar 

  • IS 1893-part 1. (2016). Criteria for earthquake resistant design of structures. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  • Jaiswal, P., & van Westen, C. J. (2009). Estimating temporal probability for landslide initiation along transportation routes based on rainfall threshold. Geomorphology, 112, 96–105.

    Google Scholar 

  • Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative assessment of direct and indirect landslide risk along transportation lines in southern India. Natural Hazards Earth System Sciences, 10, 1253–1267.

    Google Scholar 

  • Jaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India. Natural Hazards Earth System Sciences, 11, 1723–1743.

    Google Scholar 

  • Kannan, M., Saranathan, E., & Anbalagan, R. (2015). Comparative analysis in GIS-based landslide hazard zonation—A case study in Bodi-Bodimettu Ghat section, Theni District, Tamil Nadu, India. Arabian Journal of Geosciences, 8, 691–699.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Gupta, R. P., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5, 407–416.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85, 347–366.

    Google Scholar 

  • Kanungo, D. P., Arora, M., Sarkar, S., & Gupta, R. (2009). Landslide susceptibility zonation (LSZ) mapping—A review. Journal of South Asia Disaster Studies, 2(1), 81–105.

    Google Scholar 

  • Kaya, E., Agca, M., Adiguzel, F., & Cetin, M. (2019). Spatial data analysis with R programming for environment. Human and Ecological Risk Assessment: An International Journal, 25(6), 1521–1530.

    CAS  Google Scholar 

  • Kelly, A. J., Clifton, A. W., Antunes, P. J., & Widger, R. A. (2005). Application of a landslide risk management system to the Saskatchewan highway network. In O. Hunger, R. Fell, R. Coutre, & E. Eberhardt (Eds.), Landslide risk management (pp. 571–580). Rotterdam: Balkema.

    Google Scholar 

  • Koirala, N. P., & Watkins, A. T. (1988). Bulk appraisal of slopes in Hong Kong. In C. Bonnard (Ed.), Landslides (Vol. 2, pp. 1181–1186). Rotterdam: Balkema.

    Google Scholar 

  • Lee, E. M. (1999). Coastal planning and management: The impact of the 1993 Holbeck Hall Landslide, Scarborough, East Midlands. Geographer, 21, 78–91.

    Google Scholar 

  • Lee, E. M., & Clark, A. R. (2000). The use of archive records in landslide risk assessment: Historical landslide events on the Scarborough Coast, UK. In E. N. Bromhead, N. Dixon, & M. L. Ibsen (Eds.), Landslides: In research, theory and practice (pp. 904–910). London: Thomas Telford.

    Google Scholar 

  • Lin, M. L., & Tung, C. C. (2003). A GIS-based Potential analysis of the landslides induced by the chi-chi Earthquake. Engineering Geology, 71, 63–77.

    Google Scholar 

  • Martha, T., van Westen, C., Kerle, N., Jetten, V., & Vinod, K. (2013). Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology, 184, 139–150.

    Google Scholar 

  • Michael-Leiba, M., Baynes, F., & Scott, G. (1999). Quantitative landslides of Cairns. Australian Geological Survey Organisation, Department of Industry, Science & Resources, AGSO Records 25, 36, 40.

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modeling: A review of hydrological geomorphological and biological applications. Hydrological Process, 5, 3–30.

    Google Scholar 

  • Oliveira, S. C., Zêzere, J. L., Catalão, J., & Nico, G. (2015). The contribution of PS InSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides, 12, 703–719.

    Google Scholar 

  • Palmer, J. S., Clark, A. R., Cliffe, D., & Eade, M. (2002). The management of risk on the Chalk Cliffs at Brighton, UK. In R. G. McInnes & J. Jakeways (Eds.), Instability—planning and management (pp. 355–362). London: Thomas Telford.

    Google Scholar 

  • Pereira, S., Garcia, R. A. C., Zêzere, J. L., Oliveira, S. C., & Silva, M. (2016). Landslide quantitative risk analysis of buildings at the municipal scale based on a rainfall triggering scenario. Geomatics, Natural Hazards and Risk, 8(2), 624–648.

    Google Scholar 

  • Pham, B. T., Tien Bui, D., Indra, P., & Dholakia, M. B. (2017). Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA, 149, 52–63.

    Google Scholar 

  • Rautela, P., & Lakhera, R. C. (2000). Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). International Journal of Applied Earth Observation and Geoinformation (JAG), 2(3–4), 153–160.

    Google Scholar 

  • Remondo, J., Bonachea, J., & Cendrero, A. (2005). A statistical approach to landslide risk modelling at basin scale: From landslide susceptibility to quantitative risk assessment. Landslides, 2, 321–328.

    Google Scholar 

  • Royal Society. (1992). Risk: Analysis, perception and management. London: Report of a Royal Society Study Group, Royal Society.

    Google Scholar 

  • SafeLand. (2010). Revision 2, 7th framework programme, Grant Agreement No.: 226479, SGI/ICG revision: 1—final.

  • Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation—With a case study in the Himalayas. Landslides, 2, 61–69.

    Google Scholar 

  • Sajinkumar, K. S., Anbazhagan, S., Rani, V. R., & Muraleedharan, C. (2014). A paradigm quantitative approach for a regional risk assessment and management in a few landslide prone hamlets along the wind ward slope of Western Ghats, India. International Journal Disaster Risk Reduction, 7, 142–153.

    Google Scholar 

  • Sajwan, K. S., & Sushil, K. (2016). A geological appraisal of slope instability in Upper Alaknanda Valley, Uttarakhand Himalaya, India. Journal of Geology and Geophysics, 5(5), 1–7.

    Google Scholar 

  • Saldivar-Sali, A., & Einstein, H. H. (2007). A landslide risk rating system for Baguio, Philippines. Engineering Geology, 91, 85–99.

    Google Scholar 

  • Sandilands, N. M., Noble, M., & Findlay, J. W. (1998). Risk assessment strategies for dam based hydro schemes. In P. Tedd (Ed.), The prospect for reservoirs in the 21st century. London: Thomas Telford.

    Google Scholar 

  • Sarkar, S., & Gupta, P. K. (2005). Techniques for landslide hazard zonation—Application to Srinagar-Rudraprayag area of Garhwal Himalaya. Journal of Geological Society of India, 65, 217–230.

    Google Scholar 

  • Sarkar, S., & Kanungo, D. P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5), 617–625.

    Google Scholar 

  • Sarkar, S., Kanungo, D. P., Patra, A. K., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science, 5, 52–62.

    Google Scholar 

  • Sema, H. V., Guru, B., & Veerappan, R. (2017). Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland, India. Modeling. Earth Systems and Environment, 3, 499–514.

    Google Scholar 

  • Singh, A., Kanungo, D. P., & Pal, S. (2018). A modified approach for semi-quantitative estimation of physical vulnerability of buildings exposed to different landslide intensity scenarios. Georisk, 13(1), 66–81.

    Google Scholar 

  • Singh, A., Kanungo, D. P., & Pal, S. (2019). Physical vulnerability assessment of buildings exposed to landslides in India. Natural Hazards, 96(2), 53–790.

    Google Scholar 

  • Singh, A., Pal, S., Kanungo, D. P., & Pareek, N. (2017). An overview of recent developments in landslide vulnerability assessment- presentation of a new conceptual framework. In Matjaž Mikoš, Željko Arbanas, Yueping Yin, & Kyoji Sassa (Eds.), Advancing culture of living with landslides (Vol. 2, pp. 795–802)., Advances in landslide science New York: Springer.

    Google Scholar 

  • Sinha, B. N., Varma, R. S., & Paul, D. K. (1975). Landslides in Darjeeling district (West Bengal) and adjacent areas. Bulletins of the Geological Survey of India, Series-B, 36, 1–45.

    Google Scholar 

  • Soeters, R., & van Westen, C. J. (1996). Slope instability recognition, analysis and zonation. In A. K. Turner & R. L. Schuster (Eds.), Landslides, investigation and mitigation, transportation research board, National Research Council, Special Report 24/7 (pp. 129–177). Washington DC: National Academy Press.

    Google Scholar 

  • Stocking, M. (1972). Relief analysis and soil erosion in Rhodesia using multi-variate techniques. Zeitschrift fur Geomorphologie NF, 16, 432–443.

    Google Scholar 

  • Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). New York: McGraw Hill.

    Google Scholar 

  • Thennavan, E., Ganapathy, G. P., Sekaran, S. S. C., & Rajawat, A. S. (2016). Use of GIS in assessing building vulnerability for landslide hazard in The Nilgiris, Western Ghats, India. Natural Hazards, 82(2), 1031–1050.

    Google Scholar 

  • Uttarakhand Tourism Development Board Department of Tourism, Government of Uttarakhand, India. https://uttarakhandtourism.gov.in/district-chamoli. Retrieved on March 31, 2019.

  • Uzielli, M., Catani, F., Tofani, V., & Casagli, N. (2015). Risk analysis for the Ancona landslide—II: Estimation of risk to buildings. Landslides, 12, 83–100.

    Google Scholar 

  • Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102, 251–256.

    Google Scholar 

  • Van Dine, D. F., Jordan, P., & Boyer, D. C. (2002). An example of risk assessment from British Columbia, Canada. In R. G. McInnes & J. Jakeways (Eds.), Instability—planning and management (pp. 399–406). London: Thomas Telford.

    Google Scholar 

  • Van Westen, C. J. (2004). Geo-information tools for landslide risk assessment, an overview of recent developments. In E. Lacerda & F. Sayão (Eds.), Landslides: Evaluation and stabilization—glissement de terrain: Evaluation et Stabilisation: Proceedings of the 9th international symposium on landslides (pp. 39–56). London: Balkema.

    Google Scholar 

  • Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.

    Google Scholar 

  • Van Westen, C. J., Rengers, N., Terlien, M. T., & Soeters, R. (1997). Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geologische Rundschau, 86(2), 404–414.

    Google Scholar 

  • Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin Engineering Geology Environment, 65(2), 167–184.

    Google Scholar 

  • Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice (pp. 1–63). Paris: UNESCO Press.

    Google Scholar 

  • Varnes, D., & The International Association of Engineering Geology Commission on Landslides and Other Mass Movements. (1984). Landslide hazard zonation: A review of principles and practice. Paris: UNESCO Press.

    Google Scholar 

  • Vranken, L., Vantilt, G., VanDen Eeckhaut, M., Vandekerckhove, L., & Poesen, J. (2015). Landslide risk assessment in a densely populated hilly area. Landslides, 12(4), 787–798.

    Google Scholar 

  • Wang, Q., Li, W., Chen, W., & Bai, H. (2015). GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji City, China. Journal of Earth System Sciences, 124(7), 1399–1415.

    Google Scholar 

  • Wong, H. N. (2005). Landslide risk assessment for individual facilities. In O. Hunger, R. Fell, R. Couture, & E. Eberhardt (Eds.), Landslide Risk Management (pp. 237–296). Rotterdam: Balkema.

    Google Scholar 

  • Zêzere, J. L., Garcia, R. A. C., Oliveira, S. C., & Reis, E. (2008). Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology, 94, 467–495.

    Google Scholar 

  • Zou, Q., Cui, P., Zeng, C., Tang, J., & Regmi, A. D. (2016). Dynamic process-based risk assessment of debris flow on a local scale. Physical Geography, 37(2), 132–152.

    Google Scholar 

Download references

Acknowledgements

The third author wishes to thank the Director, CSIR-Central Building Research Institute (CBRI), Roorkee (Uttarakhand), India, for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Kanungo.

Ethics declarations

Conflict of interest

No potential conflict.

Code availability

ArcGIS 10.3

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Pal, S. & Kanungo, D.P. An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Environ Dev Sustain 23, 5058–5095 (2021). https://doi.org/10.1007/s10668-020-00804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00804-z

Keywords

Navigation