Skip to main content
Log in

Generalized Solutions of the Galilean Invariant Thermodynamically Compatible Conservation Laws Constructed Using Godunov’s Ideas

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Galilean invariant thermodynamically compatible conservation laws that admit a class of generalized solutions is analyzed. The main feature of the generalized solutions considered in this paper is that they describe smooth solutions with the kinetic energy and total pressure loss, which accompany the dynamic process of heat supply. The principal properties of the generalized solutions analyzed in Godunov’s works are the Galilean invariance and thermodynamic compatibilty of the original conservation laws under the closed mathematical formulation of the thermal gas-dynamic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, “Thermodynamics of fluids and differential equations,” Usp. Mat. Nauk 14 (5), 97–116 (1959).

    Google Scholar 

  2. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchnaya kniga, Novosibirsk, 1998) [in Russian].

  3. S. K. Godunov and V. M. Gordienko, “Simple Galilean invariant and thermodynamically compatible conservation laws,” Prikl. Mekh. Tekh. Fiz. 43 (1), 3–16 (2002).

    MATH  Google Scholar 

  4. S. K. Godunov, T. Yu. Mikhailova, and E. I. Romenskii, “Systems of thermodynamically compatible conservation laws that are invariant under rotations,” Sib. Mat. Zh. 37, 790–806 (1996).

    Article  Google Scholar 

  5. O. A. Ladyzhenskaya, “On the construction of discontinuous solutions to quasilinear hyperbolic equations as limits of the solutions to the corresponding parabolic equations as the "viscosity coefficient” tends to zero," Dokl. Akad. Nauk SSSR 111 (2), 291–294 (1956).

    MathSciNet  MATH  Google Scholar 

  6. O. A. Oleinik, “Discontinuous solutions to nonlinear differential equations,” Usp. Mat. Nauk 12 (3(75)), 3–73 (1957).

    Google Scholar 

  7. I. M. Gelfand, “Some problems of the theory of quasilinear equations,” Usp. Mat. Nauk 14 (2(86)), 87–158 (1959).

    Google Scholar 

  8. S. K. Godunov, “On the concept of generalized solution,” Soviet Math. Dokl. 1, 1194–1196 (1960).

    MathSciNet  MATH  Google Scholar 

  9. L. V. Ovsyannikov, Lectures on the Foundations of Fluid Dynamics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. K. A. Putilov, Thermodynamics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  11. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  12. A. S. Yastrezhemskii, Technical Thermodynamics (Mashinostroenie, Moscow, 1953) [in Russian].

    Google Scholar 

  13. Theory of Air Breathing Engines, Ed. by S. M. Shlyakhtenko (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, New York, 1980).

  15. V. L. Ginzburg, “What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)?” Physics–Uspekhi 42, 353–373 (1999).

    Article  Google Scholar 

  16. G. N. Abramovich, Applied Fluid Dynamics (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  17. Yu. N. Nechaev, R. M. Fedorov, V. N. Kotovskii, and A. S. Polev, The Theory of Aviation Motors (Voenno-Vozdushnaya Ingenernaya Akademiya Zhukovskogo, Moscow, 2006) [in Russian].

  18. G. G. Cernyi, Fluid Dynamics (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  19. V. A. Mikhel’son, On the Normal Ignition Rate of Explosive Gas Mixes (Mosk. Gos. Univ., Moscow, 1890) [in Russian].

    Google Scholar 

  20. M. Ya. Ivanov and R. Z. Nigmatulin, “High-level simulation of the working process in gas turbines,” in High-Temperature Gas Turbines (Torus, Moscow, 2010), pp. 11–56 [in Russian].

    Google Scholar 

  21. M. Ya. Ivanov, “Thermodynamically compatible conservation laws in the model of heat conducting radiating gas,” Comput. Math. Mat. Phys. 51, 133–142 (2011).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to R.Z. Nigmatullin and Yu.I. Kimasov for useful discussions and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Ivanov.

Additional information

Dedicated to Academician S.K. Godunov on the occasion of his 90th birthday

Translated by A. Klimontovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.Y., Mamaev, V.K. Generalized Solutions of the Galilean Invariant Thermodynamically Compatible Conservation Laws Constructed Using Godunov’s Ideas. Comput. Math. and Math. Phys. 60, 558–567 (2020). https://doi.org/10.1134/S0965542520040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520040090

Keywords:

Navigation