Skip to main content
Log in

Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale

  • Bacterial Fungal and Virus Molecular Biology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal growth and development depend on adaptation to the particular pH of their environment. Ambient pH sensing implies the activation of the pacC signaling pathway, which then acts as a critical regulator for different physiological conditions. The PacC transcription factor may also be associated with the control of salt stress tolerance. In a pH-dependent manner, salinity stress is surpassed by changes in gene expression and coordinated activation of other signaling pathways, thus permitting survival in the challenging environment. In this study, we assessed the regulatory role of Trichophyton interdigitale PacC in response to pH variation and salinity stress. By employing gene expression analysis, we evaluated the influence of PacC in the modulation of salt stress–related genes, including the transcription factors crz1, egr2, and the MAP kinase hog1 in the dermatophyte T. interdigitale. In our analysis, we also included the evaluation of a potassium/sodium efflux P-type ATPase aiming to identify the role of PacC on its ion pumping activity. Here we demonstrated that salinity stress and buffered pH conditions might affect the pacC gene modulation in the dermatophyte T. interdigitale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kim J, Choi M, Kim JR, Jin H, Kim VN, Cho KH (2012) The co-regulation mechanism of transcription factors in the human gene regulatory network. Nucleic Acids Res 40(18):8849–8861. https://doi.org/10.1093/nar/gks664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dai Z (2019) Transcription factors indirectly regulate genes through nuclear colocalization. Cells 8(7). https://doi.org/10.3390/cells8070754

  3. Ment D, Alkan N, Luria N, Bi FC, Reuveni E, Fluhr R, Prusky D (2015) A role of AREB in the regulation of PACC-dependent acid-expressed-genes and pathogenicity of Colletotrichum gloeosporioides. Mol Plant-Microbe Interact 28(2):154–166. https://doi.org/10.1094/MPMI-09-14-0252-R

    Article  CAS  PubMed  Google Scholar 

  4. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14(4):779–790. https://doi.org/10.1002/j.1460-2075.1995.tb07056.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rossi A, Cruz AH, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM (2013) Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 65(11):930–935. https://doi.org/10.1002/iub.1217

    Article  CAS  PubMed  Google Scholar 

  6. Kullas AL, Martin SJ, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66(4):858–871. https://doi.org/10.1111/j.1365-2958.2007.05929.x

    Article  CAS  PubMed  Google Scholar 

  7. O’Meara TR, Xu W, Selvig KM, O’Meara MJ, Mitchell AP, Alspaugh JA (2014) The Cryptococcus neoformans Rim101 transcription factor directly regulates genes required for adaptation to the host. Mol Cell Biol 34(4):673–684. https://doi.org/10.1128/MCB.01359-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martins MP, Martinez-Rossi NM, Sanches PR, Gomes EV, Bertolini MC, Pedersoli WR, Silva RN, Rossi A (2019) The pH signaling transcription factor PAC-3 regulates metabolic and developmental processes in pathogenic fungi. Front Microbiol 10:2076. https://doi.org/10.3389/fmicb.2019.02076

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ruiz A, Arino J (2007) Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6(12):2175–2183. https://doi.org/10.1128/EC.00337-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caracuel Z, Casanova C, Roncero MI, Di Pietro A, Ramos J (2003) pH response transcription factor PacC controls salt stress tolerance and expression of the P-type Na+-ATPase Ena1 in Fusarium oxysporum. Eukaryot Cell 2(6):1246–1252. https://doi.org/10.1128/ec.2.6.1246-1252.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lanza M, Haro R, Conchillo LB, Benito B (2019) The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ Microbiol 21:3364–3378. https://doi.org/10.1111/1462-2920.14619

    Article  CAS  Google Scholar 

  12. Wu Y, Yin Z, Xu L, Feng H, Huang L (2018) VmPacC is required for acidification and virulence in Valsa mali. Front Microbiol 9:1981. https://doi.org/10.3389/fmicb.2018.01981

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arechiga-Carvajal ET, Ruiz-Herrera J (2005) The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena, Eukaryot Cell. 4(6):999–1008. https://doi.org/10.1128/EC.4.6.999-1008.2005

  14. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM (2006) The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 44(7):641–645. https://doi.org/10.1080/13693780600876553

    Article  CAS  PubMed  Google Scholar 

  15. Jacob TR, Peres NT, Persinoti GF, Silva LG, Mazucato M, Rossi A, Martinez-Rossi NM (2012) rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol 50(4):368–377. https://doi.org/10.3109/13693786.2011.616230

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Rossi NM, Persinoti GF, Peres NT, Rossi A (2011) Role of pH in the pathogenesis of dermatophytoses. Mycoses 55(5):381–387. https://doi.org/10.1111/j.1439-0507.2011.02162.x

    Article  CAS  PubMed  Google Scholar 

  18. Zhou YH, Hou L, Zhang YJ, Fan YH, Luo ZB, Jin D, Zhou QS, Li YJ, Wang Y, Pei Y (2014) Expression and promoter characterization of BbPacC, a pH response transcription factor gene of the entomopathogenic fungus Beauveria bassiana. Microbiology 160(Pt 2):353–361. https://doi.org/10.1099/mic.0.071159-0

    Article  CAS  PubMed  Google Scholar 

  19. Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23(2):677–686. https://doi.org/10.1128/MCB.23.2.677-686.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46(5):1319–1333. https://doi.org/10.1046/j.1365-2958.2002.03246.x

    Article  CAS  PubMed  Google Scholar 

  21. Benito B, Garciadeblas B, Rodriguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148(Pt 4):933–941. https://doi.org/10.1099/00221287-148-4-933

    Article  CAS  PubMed  Google Scholar 

  22. Martinez DA, Oliver BG, Graser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, Brakhage AA, Chen Z, Gurr SJ, Heiman D, Heitman J, Kosti I, Rossi A, Saif S, Samalova M, Saunders CW, Shea T, Summerbell RC, Xu J, Young S, Zeng Q, Birren BW, Cuomo CA, White TC (2012) Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio 3(5):e00259–e00212. https://doi.org/10.1128/mBio.00259-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peres NT, Sanches PR, Falcao JP, Silveira HC, Paiao FG, Maranhao FC, Gras DE, Segato F, Cazzaniga RA, Mazucato M, Cursino-Santos JR, Aquino-Ferreira R, Rossi A, Martinez-Rossi NM (2010) Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 10:39. https://doi.org/10.1186/1471-2180-10-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silveira HC, Gras DE, Cazzaniga RA, Sanches PR, Rossi A, Martinez-Rossi NM (2010) Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog 48(2):91–96. https://doi.org/10.1016/j.micpath.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Martins MP, Franceschini AC, Jacob TR, Rossi A, Martinez-Rossi NM (2016) Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol 65(7):605–610 https://doi.org/10.1099/jmm.0.000268

    Article  CAS  Google Scholar 

  26. Wang H, Liang Y, Zhang B, Zheng W, Xing L, Li M (2011) Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors. FEMS Yeast Res 11(5):430–439. https://doi.org/10.1111/j.1567-1364.2011.00730.x

    Article  CAS  PubMed  Google Scholar 

  27. Galgoczy DJ, Cassidy-Stone A, Llinas M, O’Rourke SM, Herskowitz I, DeRisi JL, Johnson AD (2004) Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101(52):18069–18074. https://doi.org/10.1073/pnas.0407611102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamada T, Makimura K, Hisajima T, Ishihara Y, Umeda Y, Abe S (2009) Enhanced gene replacements in Ku80 disruption mutants of the dermatophyte, Trichophyton mentagrophytes. FEMS Microbiol Lett 298(2):208–217. https://doi.org/10.1111/j.1574-6968.2009.01714.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank V. M. de Oliveira, M. Mazucato, and M. D. Martins for technical assistance.

Funding

This study was funded by the Research Support Foundation of São Paulo State (FAPESP; Grant No. 14/03847-7, and Fellowship No. 10/15017-8 to LGS, 18/11319-1 to MPM, and 09/08411-4 to NTAP), National Council for Scientific and Technological Development (CNPq, Grant Nos. 305797/2017-4 and 304989/2017-7), Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code 001), and Foundation for Support to Teaching, Research, and Assistance (FAEPA/HCFMRP-USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilce Maria Martinez-Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Celia Maria de Almeida Soares.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.G., Martins, M.P., Sanches, P.R. et al. Saline stress affects the pH-dependent regulation of the transcription factor PacC in the dermatophyte Trichophyton interdigitale. Braz J Microbiol 51, 1585–1591 (2020). https://doi.org/10.1007/s42770-020-00313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00313-1

Keywords

Navigation