Skip to main content

Advertisement

Log in

Improved Simultaneous Decolorization and Power Generation in a Microbial Fuel Cell with the Sponge Anode Modified by Polyaniline and Chitosan

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, microbial fuel cell (MFC) has been regarded as a promising technology for dye wastewater treatment. Compared with traditional anaerobic reactors, MFC has better decolorization effect while producing electricity simultaneously. In this paper, a double-chamber MFC with the sponge anode modified by polyaniline and chitosan-NCNTs was employed for simultaneous azo dye decolorization and bioelectricity generation. The influence of dye concentration, co-substrate concentration, and operating temperature on the performance of MFC with the modified anodes were studied. The results showed that a high decolorization efficiency (98.41%) and maximum power density (2816.67 mW m−3) of MFC equipped with modified bioanodes were achieved due to the biocompatibility and bioelectrocatalysis of modified material. And the biomass on the modified anode’s surface was increased by 1.47 times. Additionally, microbial community analysis revealed that the modification of polyaniline and chitosan-NCNTs improved the selective enrichment of specific communities and the main microorganism was the electroactive and decolorizing bacteria Enterobacter (62.84%). Therefore, the composite anode is capable of fully utilizing the synergistic role of various materials, leading to superior performance of dye decolorization in MFCs. This work provided a strategy for the research on the recovery of biomass energy and decolorization in wastewater treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138–157.

    Article  CAS  Google Scholar 

  2. Zhang, Y., Liu, M. M., Zhou, M. H., Yang, H. J., Liang, L., & Gu, T. Y. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renewable & Sustainable Energy Reviews, 103, 13–29.

    Article  CAS  Google Scholar 

  3. Kumar, S. S., Kumar, V., Malyan, S. K., Sharma, J., Mathimani, T., Maskarenj, M. S., Ghosh, P. C., & Pugazhendhi, A. (2019). Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 254(15), 115526.

    Article  CAS  Google Scholar 

  4. Nidheesh, P. V., Zhou, M. H., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227.

    Article  PubMed  CAS  Google Scholar 

  5. Guo, X., Zhan, Y. L., Chen, C. M., Cai, B., Wang, Y., & Guo, S. H. (2016). Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renewable Energy, 87(1), 437–444.

    Article  CAS  Google Scholar 

  6. Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2015). Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosens Bioelectron, 68(15), 135–141.

    Article  PubMed  CAS  Google Scholar 

  7. Fang, Z., Song, H. L., Yu, R., & Li, X. N. (2016). A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products. Ecological Engineering, 94, 455–463.

    Article  Google Scholar 

  8. Wen, Q., Kong, F. Y., Zheng, H. T., Yin, J. L., Cao, D. X., Ren, Y. M., & Wang, G. L. (2011). Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell. Journal of Power Sources, 196(5), 2567–2572.

    Article  CAS  Google Scholar 

  9. Kim, K. Y., Yang, W. L., & Logan, B. E. (2015). Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Research, 80(1), 41–46.

    Article  PubMed  CAS  Google Scholar 

  10. Li, Z. J., Zhang, X. W., Lin, J., Han, S., & Lei, L. C. (2010). Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresource Technology, 101(12), 4440–4445.

    Article  PubMed  CAS  Google Scholar 

  11. Cao, Y. Q., Hu, Y. Y., Sun, J. A., & Hou, B. (2010). Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry, 79(1), 71–76.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, X., Li, X., Zhao, X., & Li, Y. (2019). Factors affecting the efficiency of a bioelectrochemical system: a review. RSC Advances, 9, 19748–19761.

    Article  CAS  Google Scholar 

  13. Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. Journal of Power Sources, 356(15), 225–244.

    Article  PubMed  CAS  Google Scholar 

  14. Valdivia, A., Gonzalez-Martinez, S., & Wilderer, P. A. (2007). Biological nitrogen removal with three different SBBR. Water Science and Technology, 55(7), 245–254.

    Article  PubMed  CAS  Google Scholar 

  15. Deng, L. J., Ngo, H. H., Guo, W. S., Wang, J., & Zhang, H. W. (2018). Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater. Chemical Engineering Journal, 338(15), 166–175.

    Article  CAS  Google Scholar 

  16. Wang, H. C., Liu, X. P., Zhang, B. C., Yang, J. B., Zhang, Z. J., Yue, R. R., & Wang, Z. W. (2019). Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode. Journal of Alloys And Compounds, 786(25), 995–1004.

    Article  CAS  Google Scholar 

  17. Ma, C. Y., & Hou, C. H. (2019). Enhancing the water desalination and electricity generation of a microbial desalination cell with a three-dimensional macroporous carbon nanotube-chitosan sponge anode. Sci Total Environ, 675(20), 41–50.

  18. Quan, X. C., Xu, H. D., Sun, B., & Xiao, Z. T. (2018). Anode modification with palladium nanoparticles enhanced Evans Blue removal and power generation in microbial fuel cells. International Biodeterioration & Biodegradation, 132, 94–101.

    Article  CAS  Google Scholar 

  19. Mohamed, H. O., Obaid, M., Poo, K. M., Abdelkareem, M. A., Talas, S. A., Fadali, O. A., Kim, H. Y., & Chae, K. J. (2018). Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chemical Engineering Journal, 349(1), 800–807.

    Article  CAS  Google Scholar 

  20. Zhong, D. J., Liu, Y. Q., Liao, X. R., Zhong, N. B., & Xu, Y. L. (2018). Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell. International Journal of Hydrogen Energy, 43(51), 23014–23026.

    Article  CAS  Google Scholar 

  21. Liu, X., Zhao, X. H., Yu, Y. Y., Wang, Y. Z., Shi, Y. T., Cheng, Q. W., Z., F., & Yong, Y. C. (2017). Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochimica Acta., 255(20), 41–47.

    Article  CAS  Google Scholar 

  22. Zhong, D. J., Liao, X. R., Liu, Y. Q., Zhong, N. B., & Xu, Y. L. (2018). Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@ polyaniline-carbon felt anode. Bioresource Technology, 258, 125–134.

    Article  PubMed  CAS  Google Scholar 

  23. Yellappa, M., Sravan, J. S., Sarkar, O., Reddy, Y., & Mohan, S. V. (2019). Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. Bioresource Technology, 284, 148–154.

    Article  PubMed  CAS  Google Scholar 

  24. Lv, Z. S., Chen, Y. F., Wei, H. C., Li, F. S., Hu, Y., Wei, C. H., & Feng, C. H. (2013). One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochimica Acta, 111, 366–373.

    Article  CAS  Google Scholar 

  25. Wang, W., You, S. J., Gong, X. B., Qi, D. P., Chandran, B. K., Bi, L. P., Cui, F. Y., & Chen, X. D. (2016). Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells. Advanced Materials, 28(2), 270–275.

    Article  PubMed  CAS  Google Scholar 

  26. Sun, J., Cai, B. H., Xu, X. J., Wang, Y., Zhang, Y. P., Peng, Y. P., Chang, K. L., Kuo, J. H., Chen, K. F., Ning, X. N., Liu, G. H., Wang, Y. J., Yang, Z. Y., & Liu, J. Y. (2017). Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnOx-doped polypyrrole film electrodes. Bioresource Technology, 225, 40–47.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, T. W., Vasantha, A. S., Chen, S. M., Farraj, D. A., Elshikh, M. S., Alkufeidy, R. M., & Al Khulaifi, M. M. (2019). Sonochemical synthesis and fabrication of honeycomb like zirconium dioxide with chitosan modified electrode for sensitive electrochemical determination of anti-tuberculosis (TB) drug. Ultrasonics Sonochemistry, 59, 104718.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, X. B., Wei, Z. H., Zhao, Z. P., Miao, Y. L., Qiu, Y. D., Yang, W. J., Jia, X., Liu, Z. Y., & Hou, H. W. (2018). Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery. ACS Applied Materials & Interfaces, 10(7), 6608–6617.

    Article  CAS  Google Scholar 

  29. Saldias, C., Diaz, D. D., Bonardd, S., Soto-Marfull, C., Cordoba, A., Saldias, S., Quezada, C., Radic, D., & Leiva, Á. (2018). In situ preparation of film and hydrogel bio-nanocomposites of chitosan/ fluorescein-copper with catalytic activity. Carbohydrate Polymers, 180(15), 200–208.

    Article  PubMed  CAS  Google Scholar 

  30. Xu, H. T., Wu, J. S., Qi, L. J., Chen, Y., Wen, Q., Duan, T. G., & Wang, Y. Y. (2018). Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage. Journal of Applied Electrochemistry, 48(11), 1285–1295.

    Article  CAS  Google Scholar 

  31. Wang, Y. Y., Wen, Q., Chen, Y., & Qi, L. J. (2017). A novel polyaniline interlayer manganese dioxide composite anode for high-performance microbial fuel cell, A review. Journal of the Taiwan Institute of Chemical Engineers, 75, 112–118.

    Article  CAS  Google Scholar 

  32. Kumru, M., Eren, H., Catal, T., Bermek, H., & Akarsubasi, A. T. (2012). Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environmental Technology, 33(18), 2167–2175.

    Article  PubMed  CAS  Google Scholar 

  33. Solis, M., Solis, A., Perez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47(12), 1723–1748.

    Article  CAS  Google Scholar 

  34. Zhang, B. G., Zhao, H. Z., Zhou, S. G., Shi, C. H., Wang, C., & Ni, J. R. (2009). A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technology, 100(23), 5687–5693.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, L. P., Cheng, S. A., & Chen, G. H. (2011). Bioelectrochemical systems for efficient recalcitrant wastes treatment. Journal of Chemical Technology And Biotechnology., 86(4), 481–491.

    Article  CAS  Google Scholar 

  36. Guo, W., Feng, J. L., Song, H., & Sun, J. H. (2014). Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity. Environmental Science and Pollution Research, 21(9), 11531–11540.

    Article  PubMed  CAS  Google Scholar 

  37. Morris, J. M., Jin, S., Crimi, B., & Pruden, A. (2009). Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chemical Engineering Journal, 146(2), 161–167.

    Article  CAS  Google Scholar 

  38. Sun, J., Hu, Y. Y., & Hou, B. (2011). Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell. Electrochimica Acta, 56(19), 6874–6879.

    Article  CAS  Google Scholar 

  39. Fang, Z., Cao, X., Li, X. X., Wang, H., & Li, X. N. (2017). Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment. Bioresource Technology, 238, 450–460.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, J. F., Song, X. S., Wang, Y. H., Abayneh, B., Ding, Y., Yan, D. H., & Bai, J. H. (2016). Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell. Bioresource Technology, 221, 697–702.

    Article  PubMed  CAS  Google Scholar 

  41. Sun, R., Zhou, A. J., Jia, J. N., Liang, Q., Liu, Q., Xing, D. F., & Ren, N. Q. (2015). Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresource Technology, 175, 68–74.

    Article  PubMed  CAS  Google Scholar 

  42. Miran, W., Nawaz, M., Kadam, A., Shin, S., Heo, J., Jang, J., & Lee, D. S. (2015). Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Environmental Science and Pollution Research, 22(17), 13477–13485.

    Article  PubMed  CAS  Google Scholar 

  43. Kong, F. Y., Ren, H. Y., Pavlostathis, S. G., Wang, A. J., Nan, J., & Ren, N. Q. (2018). Enhanced azo dye decolorization and microbial community analysis in a stacked bioelectrochemical system. Chemical Engineering Journal, 354(15), 351–362.

    Article  CAS  Google Scholar 

  44. Li, T. T., Fang, Z., Yu, R., Cao, X., Song, H. L., & Li, X. N. (2016). The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community. Environmental Technology, 37(13), 1683–1692.

    Article  PubMed  CAS  Google Scholar 

  45. Toczylowska-Maminska, R., Szymona, K., Madej, H., Wong, W. Z., Bala, A., Brutkowski, W., Krajewski, K., H’ng, P. S., & Mamiński, M. (2015). Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell. Applied Energy, 160(15), 88–93.

    Article  CAS  Google Scholar 

  46. Logan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319.

    Article  PubMed  CAS  Google Scholar 

  47. Cui, M. H., Cui, D., Gao, L., Cheng, H. Y., & Wang, A. J. (2016). Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater. Electrochimica Acta, 220(1), 252–257.

    Article  CAS  Google Scholar 

  48. Chen, G., Huang, M. H., Chen, L., & Chen, D. H. (2011). A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp GY-1. International Biodeterioration & Biodegradation, 65(6), 790–796.

    Article  CAS  Google Scholar 

  49. Holkar, C. R., Pandit, A. B., & Pinjari, D. V. (2014). Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp. F NCIM 5545. Bioresource Technology, 173, 342–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The project was supported by National Natural Science Foundation of China (21878060 and 21476053), Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute under the contract no. 6142901180401, China Scholarship Council (201806685019), and Research Project Fund of Harbin University of Commerce (2019DS082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Wang, L., Lin, C. et al. Improved Simultaneous Decolorization and Power Generation in a Microbial Fuel Cell with the Sponge Anode Modified by Polyaniline and Chitosan. Appl Biochem Biotechnol 192, 698–718 (2020). https://doi.org/10.1007/s12010-020-03346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03346-2

Keywords

Navigation