Skip to main content

Advertisement

Log in

Ionic liquid loaded polyether sulfone microspheres for CO2 separation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Carbon dioxide permeation studies were conducted on polyether-sulfone (PES) microspheres fabricated using phase-inversion technique by loading various amine-functionalized imidazolium cation ILs with a common anion bis-trifluoromethylsulfonylamide ([TF2N]) on PES-polymer matrix. The cations include: Aminopropyl-butyl-imidazolium [APBIM], Diethyl-aminoethyl-imidazolium [DEAEBIM], Diaminopropyl-butyl-imidazolium [DMAPBIM]. Breakthrough adsorption of CO2 and CH4 was studied with a feed composition of 20% CO2, 20% CH4 and 60% N2 by weight (4.835 mmol/L of CO2, 13.296 mmol/L of CH4 and 22.794 mmol/L of N2), at flow rates of 22 and 36 mL/min (superficial gas velocities are 0.29 cm/s and 0.47 cm/s). Among the ILs studied, [APBIM] showed maximum CO2 permeation. Results indicate that pore size and porosity are crucial for better CO2 absorption and need of further modification to microspheres morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anthony, J.L., Aki, S.N.V.K., Maginn, E.J., Brennecke, J.F.: Feasibility of using ionic liquids for carbon dioxide capture. Int. J. Environ. Technol. Manag. 4(1–2), 105–109 (2004)

    Article  CAS  Google Scholar 

  • Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methyliimidazolium hexafluorophosphate. J. Phys. Chem. B 106(29), 7315–7320 (2002)

    Article  CAS  Google Scholar 

  • Bates, E.D., Mayton, R.D., Ntai, I., Davis, J.H.: CO2 capture by a task specific ionic liquid. J. Am. Chem. Soc. 124(6), 926–927 (2002)

    Article  CAS  Google Scholar 

  • Bodzek, M.: Reviews—membrane techniques in air cleaning. Pol. J. Environ. Stud. 9(1), 1–12 (2000)

    CAS  Google Scholar 

  • Brunetti, A., Scura, F., Barbieri, G., Drioli, E.: Membrane technologies for CO2 separation. J. Membr. Sci. 359(1–2), 115–125 (2010)

    Article  CAS  Google Scholar 

  • Brunetti, A., Macedonio, F., Barbieri, G., Drioli, E.: Review—membrane engineering for environmental protection and sustainable industrial growth: options for water and gas treatment. Environ. Eng. Res. 20(4), 307–328 (2015)

    Article  Google Scholar 

  • Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J.: Why CO2 so soluble in imidazolium based ionic liquids? J. Am. Chem. Soc. 126(16), 5300–5308 (2004)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2(9), 796–854 (2009)

    Article  CAS  Google Scholar 

  • Colin, A.S., Kentish, S.E., Stevens, G.W.: Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 1(1), 52–66 (2008)

    Article  Google Scholar 

  • D’Alessandro, D.M., Smit, B., Long, J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010)

    Article  Google Scholar 

  • Daal, L., Claassen, L., Bruns, R., Schallert, B., Brunetti, A., Barbieri, G., Nijmeijer, K.: Field tests of carbon dioxide removal from flue gasses using polymer membranes. VGB Powertech 93(6), 78–84 (2013)

    CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London, ISBN: 978-1-86094-382-9 (1998)

    Book  Google Scholar 

  • Elena, T.-C., James, S., David, G.-T.: CO2 capture in ionic liquids: a review of solubilities and experimental methods. J. Chem. (2013). https://doi.org/10.1155/2013/473584

    Article  Google Scholar 

  • Fallanza, M., Ortiz, A., Gorri, D., Ortiz, I.: Polymer–ionic liquid composite membranes for propane/propylene separation by facilitated transport. J. Membr. Sci. 444, 164–172 (2013)

    Article  CAS  Google Scholar 

  • Gao, H., Bai, L., Han, J., Yang, B., Zhang, S., Zhang, X.: Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 54, 12671–12685 (2018)

    Article  CAS  Google Scholar 

  • Guohua, J., Pan, F., Lv, B., Zhou, Z.: Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture. Process Biochem. 50(12), 2234–2241 (2015)

    Article  Google Scholar 

  • Gutowski, K.E., Maginn, E.J.: Amine-functionalized task specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J. Am. Chem. Soc. 130(44), 14690–14704 (2008)

    Article  CAS  Google Scholar 

  • Kanehashi, S., Kishida, M., Kidesaki, T., Shindo, R., Sato, S., Miyakoshi, T., Nagai, K.: CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. J. Membr. Sci. 430, 211–222 (2013)

    Article  CAS  Google Scholar 

  • Karadas, F., Atilhan, M., Aparicio, S.: Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24(11), 5817–5828 (2010)

    Article  CAS  Google Scholar 

  • Kemper, J.: Biomass and carbon dioxide capture and storage: a review. Int. J. Greenh. Gas Control 40, 401–430 (2015)

    Article  CAS  Google Scholar 

  • Lakshmi, D.S., Figoli, A., Fiorani, G., Carraro, M., Giorno, L., Drioli, E.: Preparation and characterization of ionic liquid polymer microspheres [PEEKWC/DMF/CYPHOSIL101] using phase-inversion technique. Sep. Purif. Technol. 97, 179–185 (2012a)

    Article  Google Scholar 

  • Lakshmi, D.S., Figoli, A., Giovanna, M., Golemme, G., Drioli, E.: Preparation and characterization of porous and non-porous polymeric microspheres by phase inversion coupled with membrane process. Adv. Polym. Technol. 31(3), 231–241 (2012b)

    Article  CAS  Google Scholar 

  • Li, B.Y., Duan, Y.H., Luebke, D., Morreale, B.: Advances in CO2 capture technology: a patent review. Appl Energy 102, 1439–1447 (2013)

    Article  CAS  Google Scholar 

  • Liang, L., Gan, Q., Nancarrow, P.: Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. J. Membr. Sci. 450, 407–417 (2014)

    Article  CAS  Google Scholar 

  • Luis, P., Van Gerven, T., Van der Bruggen, B.: Recent developments in membrane-based technologies for CO2 capture. Prog. Energy Combust. Sci. 38(3), 419–448 (2012)

    Article  CAS  Google Scholar 

  • Mohshim, D.Z., Hilmi Mukhtar, H., Man, Z.: Composite blending of ionic liquid–poly (ether sulfone) polymeric membranes: green materials with potential for carbon dioxide/methane separation. J. Appl. Polym. Sci. 133(39), 43999 (2016)

    Article  Google Scholar 

  • Nemestóthy, N.: Separation of gases by membranes: the effects of pollutants on the stability of membranes. Hung. J. Ind. Chem. 45(1), 5–8 (2017)

    Article  Google Scholar 

  • Peters, L., Hussain, A., Follmann, M., Melin, T., Hagg, M.B.: CO2 removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chem. Eng. J. 172(2–3), 952–960 (2011)

    Article  CAS  Google Scholar 

  • Ramasubramanian, K., Ho, W.W.: Recent developments on membranes for post-combustion carbon capture. Curr. Opin. Chem. Eng. 1(1), 47–54 (2011)

    Article  CAS  Google Scholar 

  • Ravelli, A.L., Mutelet, F., Jaubert, J.N.: High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethyleneglycol) dimethylether. J. Phys. Chem. B 114(40), 12908–12913 (2010)

    Article  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York, ISBN: 978-0-471-86606-0 (1984)

    Google Scholar 

  • Sanchez, L.M.G., Meindersma, G.W., de Haan, A.B.: Solvent properties of functionalized ionic liquids for CO2 absorption. Chem. Eng. Res. Des. 85(1), 31–39 (2007)

    Article  CAS  Google Scholar 

  • Sistla, Y.S., Khanna, A.: Carbon dioxide absorption studies using amine-functionalized ionic liquids. J. Ind. Eng. Chem. 20(4), 2497–2509 (2014)

    Article  CAS  Google Scholar 

  • Tomé, C.L., Mecerreyes, D., Carmen Freire, S.R., Rebelo, L.P.N., Isabel Marrucho, M.: Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes. J. Membr. Sci. 428, 260–266 (2013)

    Article  Google Scholar 

  • Tuinier, M.J., Hamers, H.P., Annaland, M.V.: Techno-economic evaluation of cryogenic CO2 capture—a comparison with absorption and membrane technology. Int. J. Greenh. Gas Control 5, 1559–1565 (2011)

    Article  CAS  Google Scholar 

  • Yuan, J., Fan, M.L., Zhang, F.F., Xu, Y.S., Tang, H.L., Huang, C., Zhang, H.N.: Amine-functionalized poly(ionic liquid) brushes for carbon dioxide adsorption. Chem. Eng. J. 316, 903–910 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DSL thanks EU-FP7 for awarding Marie Curie International Incoming Fellowship, EU Programme (FP7-PEOPLE-IIF- 2008), No.237855, ILMC. The authors acknowledge the support from Indian Institute of Technology Kanpur India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Shanthana Lakshmi or A. Figoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, D.S., Sistla, Y.S., Khanna, A. et al. Ionic liquid loaded polyether sulfone microspheres for CO2 separation. Adsorption 26, 737–747 (2020). https://doi.org/10.1007/s10450-020-00241-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00241-4

Keywords

Navigation