Skip to main content
Log in

A simple and practical representation of compatibility condition derived using a QR decomposition of the deformation gradient

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper examines a condition for the existence and uniqueness of a finite deformation field whenever a Gram–Schmidt (QR) factorization of the deformation gradient \({\mathbf {F}}\) is used. First, a compatibility condition is derived, provided that a right Cauchy–Green tensor \({\mathbf {C}} = {\mathbf {F}}^T {\mathbf {F}}\) is prescribed. It is well-known that under this condition a vanishing of the Riemann curvature tensor \({\mathbb {R}}\) ensures compatibility of a finite deformation field. We derive a restriction imposed on Laplace stretch \(\varvec{{\mathcal {U}}}\), arising from a QR decomposition of the deformation gradient, through this compatibility condition. The derived condition on Laplace stretch is unambiguous, because a Cholesky factorization of the right Cauchy–Green tensor ensures the existence of a unique Laplace stretch. Although a vanishing of the Riemann curvature tensor provides a necessary and sufficient compatibility condition from a purely geometric point of view, this condition lacks a direct physical interpretation in a sense that one cannot identify the restrictions imposed by this condition on a quantity that can be readily measured from experiments. On the other hand, our compatibility condition restricts dependence of components of a Laplace stretch on certain spatial variables in a reference configuration. Unlike the symmetric right Cauchy–Green stretch tensor \({\mathbf {U}}\) obtained from a traditional polar decomposition of \({\mathbf {F}}\), the components of Laplace stretch can be measured from experiments. Thus, this newly derived compatibility condition provides a physical meaning to the somewhat abstract idea of the traditionally used compatibility condition, viz., a vanishing of the Riemann curvature tensor. Couplings between certain components of the Laplace stretch representing shear and elongation play a crucial role in deriving this condition. Finally, implications of this compatibility condition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. McLellan denoted this upper-triangular matrix as \({\mathbf {H}}\).

  2. Srinavasa denoted this upper-triangular matrix as \(\tilde{{\mathbf {F}}}\).

  3. Except for the current position vector \({\varvec{x}}\), which retains its classical representation.

  4. Except for the Laplace stretch \(\varvec{{\mathcal {U}}}\) that is written in a bold calligraphic font to distinguish it from the classic, symmetric stretch \({\mathbf {U}}\) that arises from a polar decomposition of the deformation gradient, viz., \({\mathbf {F}} = \mathbf {RU}\) where \({\mathbf {R}}\) is orthogonal, \({\mathbf {R}} \ne \varvec{{\mathcal {R}}}\).

  5. Note that the Ricci tensor, obtained by contracting a Riemann curvature tensor, has nine components. The symmetry arguments of a Riemann curvature tensor ensure that only six of these nine components are independent.

  6. The term \(W_{1,2}\) becomes zero according to Eq. (C.1.19).

References

  1. Acharya, A.: On compatibility conditions for the left Cauchy–Green deformation field in three dimensions. J. Elast. 56, 95–105 (1999)

    Article  MathSciNet  Google Scholar 

  2. Antman, S.S.: Ordinary differential equations of non-linear elasticity I: Foundations of the theories of non-linearly elastic rods and shells. Arch. Ration. Mech. Anal. 61, 307–351 (1976)

    Article  Google Scholar 

  3. Blume, J.A.: Compatibility conditions for a left Cauchy–Green strain field. J. Elast. 21, 271–308 (1989)

    Article  MathSciNet  Google Scholar 

  4. Burgatti, P.: Sulle deformazioni finite dei corpi continui. Mem. Accad. Sci. Bologna 1, 237–244 (1914)

    Google Scholar 

  5. Ciarlet, P.G., Gratie, L., Mardare, C.: Intrinsic methods in elasticity: a mathematical survey. Discret. Contin. Dyn. Syst. A 23, 133–164 (2009)

    Article  MathSciNet  Google Scholar 

  6. Clayton, J.D.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2015)

    MATH  Google Scholar 

  7. Freed, A.D., Erel, V., Moreno, M.R.: Conjugate stress/strain base pairs for planar analysis of biological tissues. J. Mech. Mater. Struct. 12, 219–247 (2017)

    Article  MathSciNet  Google Scholar 

  8. Freed, A.D., le Graverend, J.B., Rajagopal, K.: A decomposition of Laplace stretch with applications in inelasticity. Acta Mech. 230, 3423–3429 (2019)

    Article  MathSciNet  Google Scholar 

  9. Freed, A.D., Srinivasa, A.R.: Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient. Acta Mech. 226, 2645–2670 (2015)

    Article  MathSciNet  Google Scholar 

  10. Freed, A.D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)

    Article  MathSciNet  Google Scholar 

  11. Iwasawa, K.: On some types of topological groups. Ann. Math. 50, 507–558 (1949)

    Article  MathSciNet  Google Scholar 

  12. Kintzel, O., Başar, Y.: Fourth-order tensors–tensor differentiation with applications to continuum mechanics. Part I: Classical tensor analysis. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. Appl. Math. Mech. 86, 291–311 (2006)

    Article  Google Scholar 

  13. Lembo, M.: On the determination of the rotation from the stretch. Int. J. Solids Struct. 50, 1005–1012 (2013)

    Article  Google Scholar 

  14. Lembo, M.: On the determination of deformation from strain. Meccanica 52, 2111–2125 (2017)

    Article  MathSciNet  Google Scholar 

  15. Leon, S.J., Björck, Å., Gander, W.: Gram–Schmidt orthogonalization: 100 years and more. Numer. Linear Algebra Appl. 20, 492–532 (2013)

    Article  MathSciNet  Google Scholar 

  16. McLellan, A.G.: Finite strain coordinates and the stability of solid phases. J. Phys. C: Solid State Phys. 9, 4083 (1976)

    Article  Google Scholar 

  17. McLellan, A.G.: The Classical Thermodynamics of Deformable Materials. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  18. Paul, S., Rajagopal, K.R., Freed, A.D.: Optimal representation of Laplace stretch for transparency with the physics of deformation (in review) (2020)

  19. Shield, R.T.: The rotation associated with large strains. SIAM J. Appl. Math. 25, 483–491 (1973)

    Article  Google Scholar 

  20. Sokolnikoff, I.S.: Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. Wiley, Hoboken (1964)

    MATH  Google Scholar 

  21. Spivak, M.D.: A Comprehensive Introduction to Differential Geometry. Publish or Perish (1970)

  22. Srinivasa, A.R.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  23. Thomas, T.Y.: Systems of total differential equations defined over simply connected domains. Ann. Math. 35, 730–734 (1934)

    Article  MathSciNet  Google Scholar 

  24. Truesdell, C., Toupin, R.: The classical field theories. In: Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Springer, Berlin, pp. 226–858 (1960)

  25. Veblen, O.: Invariants of Quadratic Differential Forms, vol. 24. Cambridge University Press, Cambridge (1962)

    MATH  Google Scholar 

  26. Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ration. Mech. Anal. 209, 237–253 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. John D. Clayton for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Freed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Transpositions of tensors

1.1 Fourth-order tensor:

$$\begin{aligned} {\mathbb {A}}^T&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^T={\mathbb {A}}^{ijkl} e_j \otimes e_i \otimes e_l \otimes e_k ={\mathbb {A}}^{jilk} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^{ti}&=({\mathbb {A}}^{ijkl} e_i \otimes e_k \otimes e_j \otimes e_l )^{ti}={\mathbb {A}}^{ikjl} e_j \otimes e_i \otimes e_l \otimes e_k ={\mathbb {A}}^{ikjl} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^{to}&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^{to}={\mathbb {A}}^{ijkl} e_l \otimes e_j \otimes e_k \otimes e_i ={\mathbb {A}}^{ljki} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^t&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^t={\mathbb {A}}^{ijkl} e_l \otimes e_k \otimes e_j \otimes e_i ={\mathbb {A}}^{lkji} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^D&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^D={\mathbb {A}}^{ijkl} e_k \otimes e_l \otimes e_i \otimes e_j ={\mathbb {A}}^{klij} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^{dl}&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^{dl}={\mathbb {A}}^{ijkl} e_j \otimes e_i \otimes e_k \otimes e_l ={\mathbb {A}}^{jikl} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^{dr}&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^{dr}={\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_l \otimes e_k ={\mathbb {A}}^{ijlk} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ {\mathbb {A}}^d&=({\mathbb {A}}^{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l )^d={\mathbb {A}}^{ijkl} e_j \otimes e_i \otimes e_l \otimes e_k ={\mathbb {A}}^{jilk} e_i \otimes e_j \otimes e_k \otimes e_l \nonumber \\ \end{aligned}$$
(A.1)

1.2 Third-order tensor:

$$\begin{aligned} \begin{aligned} \mathbf {\mathtt {A}}^T&=(\mathbf {\mathtt {A}}^{ijk} e_i \otimes e_j \otimes e_k )^T=\mathbf {\mathtt {A}}^{ijk} e_i \otimes e_k \otimes e_j =\mathbf {\mathtt {A}}^{ikj} e_i \otimes e_j \otimes e_k \\ \mathbf {\mathtt {A}}^t&=(\mathbf {\mathtt {A}}^{ijk} e_i \otimes e_j \otimes e_k )^t=\mathbf {\mathtt {A}}^{ijk} e_k \otimes e_j \otimes e_i =\mathbf {\mathtt {A}}^{kji} e_i \otimes e_j \otimes e_k \\ \mathbf {\mathtt {A}}^D&=(\mathbf {\mathtt {A}}^{ijk} e_i \otimes e_j \otimes e_k )^D=\mathbf {\mathtt {A}}^{ijk} e_j \otimes e_k \otimes e_i =\mathbf {\mathtt {A}}^{jki} e_i \otimes e_j \otimes e_k \\ \end{aligned} \end{aligned}$$
(A.2)

1.3 Second-order tensor:

$$\begin{aligned} {\mathbf {A}}^T=({\mathbf {A}}^{ij} e_i \otimes e_j )^T={\mathbf {A}}^{ij} e_j \otimes e_i ={\mathbf {A}}^{ji} e_i \otimes e_j \end{aligned}$$
(A.3)

Symmetries of \({\mathbb {R}}_m\)

1.1 \({\mathbb {R}}_1\):

$$\begin{aligned} \begin{aligned} {\mathbb {R}}_1^{dr}&=-{\mathbb {R}}_1;\quad [{\mathbb {R}}_1^{dl}]^{dr}=-{\mathbb {R}}_1^{dl};\quad [[{\mathbb {R}}_1^D]^{dr}]=-{\mathbb {R}}_1^D;\\ [[{\mathbb {R}}_1^D]^{dl}]^{dr}&=-[{\mathbb {R}}_1^D]^{dl};\quad [{\mathbb {R}}_1^D]^{dr}=[{\mathbb {R}}_1^{dl}]^D \end{aligned} \end{aligned}$$
(B.4)

1.2 \({\mathbb {R}}_2\):

$$\begin{aligned} {\mathbb {R}}_2^{dr}=-{\mathbb {R}}_2;\quad {\mathbb {R}}_2^D={\mathbb {R}}_2;\quad {\mathbb {R}}_2^{ti}=[{\mathbb {R}}_2^{ti}]^D;\quad [{\mathbb {R}}_2^{ti}]^{dr}=[[{\mathbb {R}}_2^{ti}]^{dr}]^D \end{aligned}$$
(B.5)

1.3 \({\mathbb {R}}_3\):

$$\begin{aligned} \begin{aligned} {\mathbb {R}}_3^{dr}&={\mathbb {R}}_3;\quad [{\mathbb {R}}_3^{to}]^T=[{\mathbb {R}}_3^{dl}]^{ti};\quad [{\mathbb {R}}_3^{ti}]^T=[{\mathbb {R}}_3^{dl}]^{to}; \\ [[{\mathbb {R}}_3^{ti}]^T]^{dr}&=[{\mathbb {R}}_3^{ti}]^{dl};\quad [[{\mathbb {R}}_3^{to}]^{dl}]^{dr}=[{\mathbb {R}}_3^{to}]^T;\quad [[{\mathbb {R}}_3^{to}]^{dl}]^D=[{\mathbb {R}}_3^{ti}]^{dl};\quad [[{\mathbb {R}}_3^{ti}]^{dl}]^D=[{\mathbb {R}}_3^{to}]^{dl};\\ [[{\mathbb {R}}_3^{ti}]^{dr}]^D&=[{\mathbb {R}}_3^{to}]^{dr}\quad [[{\mathbb {R}}_3^{to}]^{dr}]^D=[{\mathbb {R}}_3^{ti}]^{dr};\quad [[{\mathbb {R}}_3^{to}]^T]^D=[{\mathbb {R}}_3^{dr}]^{ti};\quad [[{\mathbb {R}}_3^{ti}]^T]^D=[{\mathbb {R}}_3^{dr}]^{to}; \end{aligned} \end{aligned}$$
(B.6)

1.4 \({\mathbb {R}}_4\):

$$\begin{aligned} \begin{aligned} {\mathbb {R}}_4^t&={\mathbb {R}}_4;\quad [[{\mathbb {R}}_4^{to}]^T]^{dr}=[{\mathbb {R}}_4^{to}]^{dl};\quad [[[{\mathbb {R}}_4^{dr}]^{ti}]^{dr}]^D=[[{\mathbb {R}}_4^{dl}]^{ti}]^{dr};\\ [[{\mathbb {R}}_4^{to}]^{dl}]^D&=[{\mathbb {R}}_4^{to}]^{dl};\quad [[{\mathbb {R}}_4^{dr}]^{ti}]^D=[{\mathbb {R}}_4^{dl}]^{ti};\quad [[{\mathbb {R}}_4^{ti}]^{dr}]^D=[{\mathbb {R}}_4^{ti}]^{dr};\quad [{\mathbb {R}}_4^{ti}]^D=[{\mathbb {R}}_4^{to}]^T \end{aligned} \end{aligned}$$
(B.7)

System of equations

1.1 Equations arising from symmetries of \(f_1({\mathbb {R}}_1)\)

Because the diagonal blocks of \(f_1({\mathbb {R}})\) are zero, we obtain:

$$\begin{aligned}&aW_{1,1}=0, \end{aligned}$$
(C.1.1)
$$\begin{aligned}&aW_{3,1}=0, \end{aligned}$$
(C.1.2)
$$\begin{aligned}&\beta W_{1,1}+\gamma W_{2,1}=\alpha W_{3,1}+b W_{4,1}, \end{aligned}$$
(C.1.3)
$$\begin{aligned}&\alpha W_{1,2}+b W_{2,2}=0, \end{aligned}$$
(C.1.4)
$$\begin{aligned}&\alpha W_{6,2}+b W_{7,2}=0, \end{aligned}$$
(C.1.5)
$$\begin{aligned}&\beta W_{1,2}=-aW_{6,2}, \end{aligned}$$
(C.1.6)
$$\begin{aligned}&\beta W_{6,3}+\gamma W_{7,3}+c W_{8,3}=0, \end{aligned}$$
(C.1.7)
$$\begin{aligned}&\beta W_{3,3}+\gamma W_{4,3}+c W_{5,3}=0, \end{aligned}$$
(C.1.8)
$$\begin{aligned}&\alpha W_{3,3}+bW_{4,3}=a W_{6,3}. \end{aligned}$$
(C.1.9)

From skew-symmetry of \(f_1({\mathbb {R}}_1)\), we get

$$\begin{aligned}&aW_{1,2}=-\gamma W_{1,1}-b W_{2,1}, \end{aligned}$$
(C.1.10)
$$\begin{aligned}&a W_{3,2}=-\beta W_{1,1}-\alpha W_{2,1}, \end{aligned}$$
(C.1.11)
$$\begin{aligned}&\gamma W_{6,1}+b W_{7,1}=\alpha W_{1,2}+\alpha W_{2,2}-\gamma W_{3,2}-bW_{4,2}, \end{aligned}$$
(C.1.12)
$$\begin{aligned}&a W_{1,3}=a W_{6,1}-\gamma W_{1,3}-b W_{4,1}, \end{aligned}$$
(C.1.13)
$$\begin{aligned}&a W_{3,3}=-\beta W_{3,1}-\alpha W_{4,1}-cW_{5,1}, \end{aligned}$$
(C.1.14)
$$\begin{aligned}&\gamma W_{3,3}+b W_{4,3}=\beta W_{1,3}+\alpha W_{2,3}-\beta W_{6,1}-\alpha W_{7,1}-cW_{8,1}, \end{aligned}$$
(C.1.15)
$$\begin{aligned}&a W_{6,2}=\gamma W_{2,3}+b W_{2,3}+\gamma W_{3,2}+bW_{4,2}, \end{aligned}$$
(C.1.16)
$$\begin{aligned}&aW_{6,3}=-\beta W_{1,3}-\alpha W_{2,3}-\beta W_{3,2}-\alpha W_{4,2}-c W_{5,2}, \end{aligned}$$
(C.1.17)
$$\begin{aligned}&\gamma W_{6,3}+b W_{7,3}=-\beta W_{6,2}-\alpha W_{7,2}-c W_{8,2}. \end{aligned}$$
(C.1.18)

Because \(a,\gamma ,\beta \) and \(b,\alpha \) are the only coupled elements of \(\varvec{{\mathcal {U}}}\), we conclude that

$$\begin{aligned} \begin{aligned} W_{1,1}&=W_{2,1}=W_{1,2}=W_{3,3}=W_{4,3}=W_{3,1}=W_{6,2}=W_{6,3}=W_{7,3}=W_{2,2}=W_{5,3}=W_{7,2}\\&=W_{8,3}=W_{4,1}=W_{5,1}=W_{8,2}=W_{3,2}+W_{6,1}=W_{4,2}+W_{7,1}=W_{1,3}-W_{6,1}=W_{8,1}\\&=W_{5,2}=W_{2,3}-W_{7,1}=0. \end{aligned}\qquad \end{aligned}$$
(C.1.19)

Thus, no term involving derivatives of \(W_p\), \(p=1,...,8\), appears in the 6 equations arising from equating off-diagonal elements of \({\mathbb {R}}\) to zero.

1.2 Equations arising from vanishing of Riemann curvature tensor

\({\mathbb {R}}_{1313}=0\) leads to:

(C.2.1)

\({\mathbb {R}}_{2323}=0\) yields:

(C.2.2)

where \(\xi =\alpha \gamma -\beta b.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Freed, A.D. A simple and practical representation of compatibility condition derived using a QR decomposition of the deformation gradient. Acta Mech 231, 3289–3304 (2020). https://doi.org/10.1007/s00707-020-02702-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02702-x

Navigation