Skip to main content
Log in

Boundary control of a Timoshenko beam with prescribed performance

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper focuses on the boundary control of a Timoshenko beam with a tip mass in space. Compared with an Euler–Bernoulli beam model, the coupling of the Timoshenko beam’s transverse vibration and its cross-sectional rotation makes it difficult to develop the controller. The Timoshenko beam is essentially a distributed parameter system, the motion of which can be described using partial differential equations. A prescribed performance function is introduced to the boundary control strategy to guarantee the transient and steady tracking errors. By applying the proposed controller, the outputs are ultimately restricted within a small residual set, which is arbitrarily predefined, and the minimum convergence rate can be ensured. The stability of the boundary control is analyzed using the LaSalle’s invariance principle and the theoretical solutions of the Timoshenko beam model. Finally, the performance of the presented boundary controller is verified by numerical case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Meng, D.S., Wang, X.Q., Xu, W.F., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30–50 (2017)

    Article  Google Scholar 

  2. Chen, T., Shan, J.J., Wen, H.: Distributed adaptive attitude control for networked underactuated flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. (2018)

  3. Verlinden, O., Huynh, H.N., Kouroussis, G., Rivière-Lorphèvre, E.: Modelling of flexible bodies with minimal coordinates by means of the corotational formulation. Multibody Syst. Dyn. 42, 495–514 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chen, T., Wen, H.: Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronaut. 147, 86–96 (2018)

    Article  Google Scholar 

  5. Korayem, M.H., Dehkordi, S.F.: Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. Nonlinear Dyn. 89, 2041–2064 (2017)

    Article  Google Scholar 

  6. Yang, X.X., Ge, S.S., He, W.: Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. Int. J. Control 91, 969–988 (2018)

    Article  MathSciNet  Google Scholar 

  7. Ouyang, Y.C., He, W., Li, X.J.: Reinforcement learning control of a single-link flexible robotic manipulator. IET Control Theory Appl. 11, 1426–1433 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, T., Shan, J.J., Ramkumar, G.: Distributed adaptive control for multiple under-actuated Lagrangian systems under fixed or switching topology. Nonlinear Dyn. 93, 1705–1718 (2018)

    Article  Google Scholar 

  9. Ma, J.T., Jin, D.P., Wei, Z.T., Chen, T., Wen, H.: Boundary control of a flexible manipulator based on a high order disturbance observer with input saturation. Shock Vib. (2018). https://doi.org/10.1155/2018/2086424

    Article  Google Scholar 

  10. Ma, J.T., Wen, H., Jin, D.P.: PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance. Adv. Space Res. 65, 586–597 (2020)

    Article  Google Scholar 

  11. Auriol, J., Morris, K.A., Di Meglio, F.: Late-lumping backstepping control of partial differential equations. Automatica 100, 247–259 (2019)

    Article  MathSciNet  Google Scholar 

  12. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62, 5023–5030 (2015)

    Article  Google Scholar 

  13. Liu, Z.J., Liu, J.K., He, W.: Boundary control of an Euler–Bernoulli beam with input and output restrictions. Nonlinear Dyn. 92, 531–541 (2018)

    Article  Google Scholar 

  14. Jiang, T.T., Liu, J.K., He, W.: Adaptive boundary control for a flexible manipulator with state constraints using a Barrier Lyapunov Function. J. Dyn. Syst. Meas. Control. 140 (2018)

  15. He, W., Mu, X.X., Chen, Y.N., He, X.Y., Yu, Y.: Modeling and vibration control of the flapping-wing robotic aircraft with output constraint. J. Sound Vib. 423, 472–483 (2018)

    Article  Google Scholar 

  16. Cao, F.F., Liu, J.K.: Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov Function. J. Sound Vib. 406, 237–252 (2017)

    Article  Google Scholar 

  17. Zhang, S., He, X.Y., Yang, C.: Vibration control of a flexible marine riser with joint angle constraint. Nonlinear Dyn. 87, 617–632 (2017)

    Article  Google Scholar 

  18. Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45, 532–538 (2009)

    Article  MathSciNet  Google Scholar 

  19. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53, 2090–2099 (2008)

    Article  MathSciNet  Google Scholar 

  20. Karayiannidis, Y., Doulgeri, Z.: Model-free robot joint position regulation and tracking with prescribed performance guarantees. Robot. Autonom. Syst. 60, 214–226 (2012)

    Article  Google Scholar 

  21. Li, S., Xiang, Z.: Adaptive prescribed performance control for switched nonlinear systems with input saturation. Int. J. Syst. Sci. 49, 113–123 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wei, C.S., Luo, J.J., Dai, H.H., Bian, Z.L., Yuan, J.P.: Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications. Acta Astronaut. 146, 228–242 (2018)

    Article  Google Scholar 

  23. Wang, C.C., Yang, G.H.: Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284, 17–26 (2018)

    Article  Google Scholar 

  24. Liu, Z.J., Liu, J.K.: Boundary control of a flexible robotic manipulator with output constraints. Asian J. Control 19, 332–345 (2017)

    Article  MathSciNet  Google Scholar 

  25. Liu, Z.J., Liu, J.K.: Adaptive iterative learning boundary control of a flexible manipulator with guaranteed transient performance. Asian J. Control 19, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  26. Cao, F.F., Liu, J.K.: Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance. Int. J. Control 91, 1091–1103 (2018)

    Article  MathSciNet  Google Scholar 

  27. Siuka, A., Schöberl, M., Schlacher, K.: Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech. 222, 69–89 (2011)

    Article  Google Scholar 

  28. Pirrotta, A., Cutrona, S., Di Lorenzo, S.: Fractional visco-elastic Timoshenko beam from elastic Euler–Bernoulli beam. Acta Mech. 226, 179–189 (2015)

    Article  MathSciNet  Google Scholar 

  29. Aldraihem, O.J., Wetherhold, R.C., Singh, T.: Distributed control of laminated beams: Timoshenko theory vs. Euler–Bernoulli theory. J. Intell. Mater. Syst. Struct. 8, 149–157 (1997)

    Article  Google Scholar 

  30. Queiroz, M.S.D., Dawson, D.M., Nagarkatti, S.P., Zhang, F.M.: Lyapunov-based control of mechanical systems. Appl. Mech. Rev. 54, B81 (2001)

    Article  Google Scholar 

  31. Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2012)

    Book  Google Scholar 

  32. LaSalle, J.P.: The Stability of Dynamical Systems. Siam, New York (1976)

    Book  Google Scholar 

  33. Cao, F.F., Liu, J.K.: Partial differential equation modeling and vibration control for a nonlinear 3D rigid-flexible manipulator system with actuator faults. Int. J. Robust Nonlinear Control 29, 3793–3807 (2019)

    Article  MathSciNet  Google Scholar 

  34. Chen, T., Wen, H., Wei, Z.T.: Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronaut. 159, 637–645 (2019)

    Article  Google Scholar 

  35. Cao, F.F., Liu, J.K.: Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model. J. Frankl. Inst. 357, 1026–1042 (2020)

    Article  MathSciNet  Google Scholar 

  36. Vu, Q.P., Wang, J.M., Xu, G.Q., Yung, S.P.: Spectral analysis and system of fundamental solutions for Timoshenko beams. Appl. Math. Lett. 18, 127–134 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11832005, 11772150 and 11902145) and the National Science Foundation of Jiangsu Province of China (Grant No. BK20190390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wei, Z., Wen, H. et al. Boundary control of a Timoshenko beam with prescribed performance. Acta Mech 231, 3219–3234 (2020). https://doi.org/10.1007/s00707-020-02701-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02701-y

Navigation