Skip to main content

Advertisement

Log in

Bacillus toyonensis COPE52 Modifies Lipid and Fatty Acid Composition, Exhibits Antifungal Activity, and Stimulates Growth of Tomato Plants Under Saline Conditions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salinity is one of the most important factors that limit the productivity of agricultural soils. Certain plant growth-promoting bacteria (PGPB) have the ability to stimulate the growth of crop plants even under salt stress. In the present study, we analysed the potential of PGPB Bacillus toyonensis COPE52 to improve the growth of tomato plants and its capacity to modify its membrane lipid and fatty acid composition under salt stress. Thus, strain COPE52 increased the relative amount of branched chain fatty acids (15:0i and 16:1∆9) and accumulation of an unknown membrane lipid, while phosphatidylethanolamine (PE) levels decreased during growth with 100 and 200 mM NaCl. Importantly, direct and indirect plant growth-promoting (PGP) mechanisms of B. toyonensis COPE52, such as indole-3-acetic acid (IAA), protease activity, biofilm formation, and antifungal activity against Botrytis cinerea, remained unchanged in the presence of NaCl in vitro, compared to controls without salt. In a greenhouse experiment, tomato plants (Lycopersicon esculentum ‘Saladette’) showed increased shoot and root length, higher dry biomass, and chlorophyll content when inoculated with B. toyonensis COPE52 at 0 and 100 mM NaCl. In summary, these results indicate that Bacillus toyonensis COPE52 can modify cell membrane lipid components as a potential protecting mechanism to maintain PGP traits under saline-soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bui E (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25. https://doi.org/10.1016/j.jaridenv.2012.12.014

    Article  Google Scholar 

  2. Yensen P (2008) Halophyte uses for the twenty-first century. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 367–396

    Google Scholar 

  3. Shafi M, Guoping Z, Bakht J, Khan M, Islam E, Khan M, Raziuddin GZ (2010) Effect of cadmium and salinity stresses on root morphology of wheat. Pak J Bot 4:2747–2754. https://doi.org/10.1007/s00128-009-9707-7

    Article  CAS  Google Scholar 

  4. Pierzynski M, Sims T, Vance F (2005) Soils and environmental quality. CRC Press, Florida

    Book  Google Scholar 

  5. Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53:101–110. https://doi.org/10.1002/jobm.201100288

    Article  CAS  PubMed  Google Scholar 

  6. Orcutt M (2000) The physiology of plants under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  7. Dimkpa C, Weinand T, Ash F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  9. Qadir M, Oster D (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  10. Shrivastava P, Kumar R (2016) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  Google Scholar 

  11. Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 4:737–752. https://doi.org/10.1007/s13593014-0233-6

    Article  Google Scholar 

  12. Ma O-M, Duan J, DiBernardo M, Zetter E, Glick C-G et al (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392. https://doi.org/10.3389/fmicb.2019.01392

    Article  Google Scholar 

  13. Paulucci N, Gallarato A, Reguera B, Vicario C, Cesari B, García B, Dardanelli S (2015) Arachis hypogaea PGPR isolated from Argentina soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173:1–9. https://doi.org/10.1016/j.micres.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Vences-Guzmán MA, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara I, Martínez-Romero E, Geiger O, Sohlenkamp C (2011) Hidroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 79:1496–1514. https://doi.org/10.1111/j.1365-2958.2011.07535.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159. https://doi.org/10.1093/femsre/fuv008

    Article  CAS  PubMed  Google Scholar 

  16. Paulucci N, Medeot D, Dardanelli S, de Lema M (2011) Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia. Lipids 46:435–441. https://doi.org/10.1007/s11745-011-3545-1

    Article  CAS  PubMed  Google Scholar 

  17. Santoyo G, Sánchez-Yáñez J, de los Santos-Villalobos S (2019) Methods for detecting biocontrol and plant growth-promoting traits in rhizobacteria. In: Reinhardt D, Sharma A (eds) Methods in rhizosphere biology research. Rhizosphere Biology. Springer, Singapore, pp 133–149

    Chapter  Google Scholar 

  18. Kim M, Radhakrishnan R, Kang S, You Y, Jeong E, Kim J, Lee J (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants 23:571–580. https://doi.org/10.1007/s12298-017-0449-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lópes R, Cerdeira L, Tavares S, Ruiz C, Blom J, Horácio A, Mantovani C, Queiroz V (2017) Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 33:185. https://doi.org/10.1007/s11274-017-2347-x

    Article  PubMed  Google Scholar 

  20. Rocha F, Oliveira C, Silva P, Melo L, Carmo M, Baldani J (2017) Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Appl Soil Ecol 120:8–19. https://doi.org/10.1016/j.apsoil.2017.07.025

    Article  Google Scholar 

  21. Contreras-Perez M, Hernández-Salmerón J, Rojas-Solis D, Rocha-Granados C, Ma O-M, Parra-Cota FI, Santos-Villalobos S, Santoyo G (2019) Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. Var. Biloxi) growth-promoting bacterium. 3 Biotech 9:370. https://doi.org/10.1007/s13205-019-1911-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bligh G, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  23. Morrison W, Smith L (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride. J Lipid Res 5:600–608

    CAS  PubMed  Google Scholar 

  24. Patten C, Glick B (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. https://doi.org/10.1128/aem.68.8.3795-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Ma O-M, Macías-Rodríguez I, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:8–92. https://doi.org/10.1016/j.biocontrol.2014.11.011

    Article  CAS  Google Scholar 

  26. Wei H, Zhang L (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie Van Leeuwenhoek 89:267–280. https://doi.org/10.1007/s10482-005-9028-8

    Article  PubMed  Google Scholar 

  27. Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42:353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  PubMed  Google Scholar 

  28. Kuhn S, Slavetinsky C, Peschel A (2015) Synthesis and function of phospholipids in Staphylococcus aureus. Int J Med Microbiol 305:196–202. https://doi.org/10.1016/j.ijmm.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  29. Ti-Yu L, Douglas W (2016) Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 100:4255–4267. https://doi.org/10.1007/s00253-016-7468-x

    Article  CAS  Google Scholar 

  30. Lópes C, Alice A, Heras H, Rivas E, Sánchez-Rivas C (2006) Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152:605–616. https://doi.org/10.1099/mic.0.28345-0

    Article  CAS  Google Scholar 

  31. Ramos J, Duque E, Gallegos M, Godoy P, Ramos-González M, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerant in gram negative bacteria. Ann Rev Microbiol 56:743–768. https://doi.org/10.1146/annurev.micro.56.012302.161038

    Article  CAS  Google Scholar 

  32. Murínova S, Decová K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014:873081. https://doi.org/10.1155/2014/873081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haque A, Russell J (2004) Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiology 150:1397–1404. https://doi.org/10.1099/mic.0.26767-0

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Li C, Qin H, Yang M, Ye J, Long Y, Ou H (2018) Proteome and phospholipid alteration reveal metabolic network of Bacillus thuringiensis under triclosan stress. Sci Total Environ 615:508–516. https://doi.org/10.1016/j.scitotenv.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  35. Santoyo G, Ma O-M, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872. https://doi.org/10.1080/09583157.2012.694413

    Article  Google Scholar 

  36. Ryu M, Farag A, Hu H, Reddy S, Wei X, Paré W, Kloepper W (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duca R, Rose R, Glick B (2018) Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 111:1645–1660. https://doi.org/10.1007/s10482-018-1051-7

    Article  CAS  PubMed  Google Scholar 

  38. Tyagi S, Kim K, Cho M, Lee J (2019) Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environ Sustain 2:211–216. https://doi.org/10.1007/s42398-019-00060-6

    Article  CAS  Google Scholar 

  39. Kasim A, Gaafar R, Abou-Ali M, Omar N, Hewait M (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227. https://doi.org/10.1016/j.aoas.2016.07.003

    Article  Google Scholar 

  40. Bais H, Fall P, Vivanco M (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. https://doi.org/10.1104/pp.103.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR (2010) Importance of biofilm formation in plant growth promoting rhizobacterial action. In: Maheshwari D (ed) Plant Growth and health promoting bacteria. Springer, Berlin, pp 81–95

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Eduardo Valencia-Cantero for the help with the statistical analyses. This study was funded by Consejo Nacional de Ciencia y Tecnología, México (Grant number: A1-S-15956) and CIC-UMSNH (2019–2020). DR-S thanks a Ph.D. scholarship from Consejo Nacional de Ciencia y Tecnología, México. We also thank the anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Santoyo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Solis, D., Vences-Guzmán, M.A., Sohlenkamp, C. et al. Bacillus toyonensis COPE52 Modifies Lipid and Fatty Acid Composition, Exhibits Antifungal Activity, and Stimulates Growth of Tomato Plants Under Saline Conditions. Curr Microbiol 77, 2735–2744 (2020). https://doi.org/10.1007/s00284-020-02069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02069-1

Navigation