1932

Abstract

A small fraction of mammalian retinal ganglion cells are directly photoreceptive thanks to their expression of the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have well-established roles in a variety of reflex responses to changes in ambient light intensity, including circadian photoentrainment. In this article, we review the growing evidence, obtained primarily from laboratory mice and humans, that the ability to sense light via melanopsin is also an important component of perceptual and form vision. Melanopsin photoreception has low temporal resolution, making it fundamentally biased toward detecting changes in ambient light and coarse patterns rather than fine details. Nevertheless, melanopsin can indirectly impact high-acuity vision by driving aspects of light adaptation ranging from pupil constriction to changes in visual circuit performance. Melanopsin also contributes directly to perceptions of brightness, and recent data suggest that this influences the appearance not only of overall scene brightness, but also of low-frequency patterns.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-030320-041239
2020-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-030320-041239.html?itemId=/content/journals/10.1146/annurev-vision-030320-041239&mimeType=html&fmt=ahah

Literature Cited

  1. Allen AE, Cameron MA, Brown TM, Vugler AA, Lucas RJ 2010. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLOS ONE 5:e15063
    [Google Scholar]
  2. Allen AE, Martial FP, Lucas RJ 2019. Form vision from melanopsin in humans. Nat. Commun. 10:2274
    [Google Scholar]
  3. Allen AE, Storchi R, Martial FP, Bedford RA, Lucas RJ 2017. Melanopsin contributions to the representation of images in the early visual system. Curr. Biol. 27:1623–32.e4
    [Google Scholar]
  4. Allen AE, Storchi R, Martial FP, Petersen RS, Montemurro MA et al. 2014. Melanopsin-driven light adaptation in mouse vision. Curr. Biol. 24:2481–90
    [Google Scholar]
  5. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT et al. 2010. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13:1107–12
    [Google Scholar]
  6. Barrionuevo PA, Nicandro N, Mcanany JJ, Zele AJ, Gamlin P, Cao D 2014. Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. Investig. Ophthalmol. Vis. Sci. 55:719–27
    [Google Scholar]
  7. Berson DM, Dunn FA, Takao M 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73
    [Google Scholar]
  8. Brown TM, Gias C, Hatori M, Keding SR, Semo M et al. 2010. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLOS Biol 8:e1000558
    [Google Scholar]
  9. Brown TM, Tsujimura S, Allen AE, Wynne J, Bedford R et al. 2012. Melanopsin-based brightness discrimination in mice and humans. Curr. Biol. 22:1134–41
    [Google Scholar]
  10. Buzsaki G, Wang XJ. 2012. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35:203–25
    [Google Scholar]
  11. Cao D, Chang A, Gai S 2018. Evidence for an impact of melanopsin activation on unique white perception. J. Opt. Soc. Am. A 35:B287–91
    [Google Scholar]
  12. Carr AJ, Vugler AA, Yu L, Semo M, Coffey P et al. 2011. The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide. Mol. Vis. 17:1701–15
    [Google Scholar]
  13. Chen SK, Badea TC, Hattar S 2011. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95
    [Google Scholar]
  14. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ et al. 1995. Suppression of melatonin secretion in some blind patients by exposure to bright light. New Engl. J. Med. 332:6–11
    [Google Scholar]
  15. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC et al. 2005. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–54
    [Google Scholar]
  16. Davis KE, Eleftheriou CG, Allen AE, Procyk CA, Lucas RJ 2015. Melanopsin-derived visual responses under light adapted conditions in the mouse dLGN. PLOS ONE 10:e0123424
    [Google Scholar]
  17. Dkhissi-Benyahya O, Gronfier C, de Vanssay W, Flamant F, Cooper HM 2007. Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53:677–87
    [Google Scholar]
  18. Do MT, Kang SH, Xue T, Zhong H, Liao HW et al. 2009. Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–87
    [Google Scholar]
  19. Do MTH. 2019. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:205–26
    [Google Scholar]
  20. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60
    [Google Scholar]
  21. Freedman MS, Lucas RJ, Soni B, Von Schantz M, Munoz M et al. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–4
    [Google Scholar]
  22. Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9:474–80
    [Google Scholar]
  23. Fries P. 2015. Rhythms for cognition: communication through coherence. Neuron 88:220–35
    [Google Scholar]
  24. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM 2007. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 47:946–54
    [Google Scholar]
  25. Gray CM. 1999. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24:31–47111–25
    [Google Scholar]
  26. Gray CM, Konig P, Engel AK, Singer W 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–37
    [Google Scholar]
  27. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM et al. 2008. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–5
    [Google Scholar]
  28. Hankins MW, Lucas RJ. 2002. The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr. Biol. 12:191–98
    [Google Scholar]
  29. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N et al. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLOS ONE 3:e2451
    [Google Scholar]
  30. Hattar S, Liao HW, Takao M, Berson DM, Yau KW 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70
    [Google Scholar]
  31. Hughes S, Hankins MW, Foster RG, Peirson SN 2012. Melanopsin phototransduction: slowly emerging from the dark. Prog. Brain Res. 199:19–40
    [Google Scholar]
  32. Joo HR, Peterson BB, Dacey DM, Hattar S, Chen SK 2013. Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells. Vis. Neurosci. 30:175–82
    [Google Scholar]
  33. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM et al. 2010. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66:417–28
    [Google Scholar]
  34. Lucas RJ, Douglas RH, Foster RG 2001. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4:621–26
    [Google Scholar]
  35. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–7
    [Google Scholar]
  36. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW 2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–47
    [Google Scholar]
  37. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM et al. 2014. Measuring and using light in the melanopsin age. Trends Neurosci 37:1–9
    [Google Scholar]
  38. Milosavljevic N, Allen AE, Cehajic-Kapetanovic J, Lucas RJ 2016a. Chemogenetic activation of ipRGCs drives changes in dark-adapted (scotopic) electroretinogram. Investig. Ophthalmol. Vis. Sci. 57:6305–12
    [Google Scholar]
  39. Milosavljevic N, Cehajic-Kapetanovic J, Procyk CA, Lucas RJ 2016b. Chemogenetic activation of melanopsin retinal ganglion cells induces signatures of arousal and/or anxiety in mice. Curr. Biol. 26:2358–63
    [Google Scholar]
  40. Milosavljevic N, Storchi R, Eleftheriou CG, Colins A, Petersen RS, Lucas RJ 2018. Photoreceptive retinal ganglion cells control the information rate of the optic nerve. PNAS 115:E11817–26
    [Google Scholar]
  41. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD et al. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–27
    [Google Scholar]
  42. Perez-Fernandez V, Milosavljevic N, Allen AE, Vessey KA, Jobling AI et al. 2019. Rod photoreceptor activation alone defines the release of dopamine in the retina. Curr. Biol. 29:763–74.e5
    [Google Scholar]
  43. Procyk CA, Eleftheriou CG, Storchi R, Allen AE, Milosavljevic N et al. 2015. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. J. Neurophysiol. 114:1321–30
    [Google Scholar]
  44. Provencio I, Jiang G, de Grip WJ, Hayes WP, Rollag MD 1998. Melanopsin: an opsin in melanophores, brain, and eye. PNAS 95:340–45
    [Google Scholar]
  45. Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Fogerson PM et al. 2019. The M6 cell: a small-field bistratified photosensitive retinal ganglion cell. J. Comp. Neurol. 527:297–311
    [Google Scholar]
  46. Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Li BY et al. 2015. All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr. Biol. 25:2763–73
    [Google Scholar]
  47. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P et al. 2002. Role of melanopsin in circadian responses to light. Science 298:2211–13
    [Google Scholar]
  48. Saleem AB, Lien AD, Krumin M, Haider B, Roson MR et al. 2017. Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93:315–22
    [Google Scholar]
  49. Schmidt TM, Alam NM, Chen S, Kofuji P, Li W et al. 2014. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781–88
    [Google Scholar]
  50. Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A 2011. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J. Neurosci. 31:16094–101
    [Google Scholar]
  51. Schmidt TM, Kofuji P. 2009. Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J. Neurosci. 29:476–82
    [Google Scholar]
  52. Sonoda T, Lee SK, Birnbaumer L, Schmidt TM 2018. Melanopsin phototransduction is repurposed by ipRGC subtypes to shape the function of distinct visual circuits. Neuron 99:754–67.e4
    [Google Scholar]
  53. Soucy E, Wang YS, Nirenberg S, Nathans J, Meister M 1998. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21:481–93
    [Google Scholar]
  54. Spitschan M, Aguirre GK, Brainard DH 2015. Selective stimulation of penumbral cones reveals perception in the shadow of retinal blood vessels. PLOS ONE 10:e0124328
    [Google Scholar]
  55. Spitschan M, Bock AS, Ryan J, Frazzetta G, Brainard DH, Aguirre GK 2017. The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. PNAS 114:12291–96
    [Google Scholar]
  56. Spitschan M, Jain S, Brainard DH, Aguirre GK 2014. Opponent melanopsin and S-cone signals in the human pupillary light response. PNAS 111:15568–72
    [Google Scholar]
  57. Spitschan M, Woelders T. 2018. The method of silent substitution for examining melanopsin contributions to pupil control. Front. Neurol. 9:941
    [Google Scholar]
  58. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM et al. 2018. The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97:150–63.e4
    [Google Scholar]
  59. Storchi R, Bedford RA, Martial FP, Allen AE, Wynne J et al. 2017. Modulation of fast narrowband oscillations in the mouse retina and dLGN according to background light intensity. Neuron 93:299–307
    [Google Scholar]
  60. Storchi R, Milosavljevic N, Eleftheriou CG, Martial FP, Orlowska-Feuer P et al. 2015. Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. PNAS 112:E5734–43
    [Google Scholar]
  61. Thyagarajan S, Van Wyk M, Lehmann K, Lowel S, Feng GP, Wassle H 2010. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J. Neurosci. 30:8745–58
    [Google Scholar]
  62. Tikidji-Hamburyan A, Reinhard K, Storchi R, Dietter J, Seitter H et al. 2017. Rods progressively escape saturation to drive visual responses in daylight conditions. Nat. Commun. 8:1813
    [Google Scholar]
  63. Tsujimura S, Ukai K, Ohama D, Nuruki A, Yunokuchi K 2010. Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses. Proc. Biol. Sci. 277:2485–92
    [Google Scholar]
  64. Tu DC, Zhang D, Demas J, Slutsky EB, Provencio I et al. 2005. Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48:987–99
    [Google Scholar]
  65. Walch OJ, Zhang LS, Reifler AN, Dolikian ME, Forger DB, Wong KY 2015. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors. J. Neurophysiol. 114:2955–66
    [Google Scholar]
  66. Warrant EJ. 1999. Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vis. Res. 39:1611–30
    [Google Scholar]
  67. Wong KY. 2012. A retinal ganglion cell that can signal irradiance continuously for 10 hours. J. Neurosci. 32:11478–85
    [Google Scholar]
  68. Yamakawa M, Tsujimura SI, Okajima K 2019. A quantitative analysis of the contribution of melanopsin to brightness perception. Sci. Rep. 9:7568
    [Google Scholar]
  69. Yoshimura T, Ebihara S. 1996. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+) mice. J. Comp. Physiol. A 178:797–802
    [Google Scholar]
  70. Zele AJ, Adhikari P, Feigl B, Cao D 2018a. Cone and melanopsin contributions to human brightness estimation. J. Opt. Soc. Am. A 35:B19–25
    [Google Scholar]
  71. Zele AJ, Feigl B, Adhikari P, Maynard ML, Cao D 2018b. Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci. Rep. 8:3842
    [Google Scholar]
  72. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG 2008. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. PNAS 105:14181–86
    [Google Scholar]
/content/journals/10.1146/annurev-vision-030320-041239
Loading
/content/journals/10.1146/annurev-vision-030320-041239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error