Skip to main content
Log in

Codon usage trend in genes associated with obesity

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Obesity is not only a social menace but also an economic burden as it reduces productivity and increases health care cost. We used bioinformatic tools to analyze the CUB of obesity associated genes and compared with housekeeping genes (control) to explore the similarities and differences between two data sets as no work was reported yet. The mean effective number of codons (ENC) in genes associated with obesity and housekeeping gene was 50.45 and 52.03 respectively, indicating low CUB. The relative synonymous codon usage (RSCU) suggested that codons namely CTG and GTG were over-represented in both obesity and housekeeping genes while under-represented codons were TCG, TTA, CTA, CCG, CAA, CGT, ATA, ACG, GTA and GCG in obesity genes and TCG, TTA, CCG, ATA, ACG, GTA, and GCG in housekeeping genes. t test analysis suggested that 11 codons namely TTA (Leu), TTG (Leu), CCG (Pro), CAC (His), CAA (Gln), CAG (Gln), CGT (Arg), AGA (Arg), ATA (Ile), ATT (Ile) and GCG (Ala) were significantly differed (p < 0.05 or p < 0.01) between obesity and housekeeping genes. Highly significant correlation was observed between GC12 and GC3 in obesity and housekeeping genes i.e. r = 0.580** and r = 0.498** (p < 0.01) respectively indicating the effect of directional mutation pressure present in all codon positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data are available in the manuscript and supplementary file.

References

  • Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927–935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bali V, Bebok Z (2015) Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 64:58–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbhuiya PA, Uddin A, Chakraborty S (2019) Compositional properties and codon usage of TP73 gene family. Gene 683:159–168

    CAS  PubMed  Google Scholar 

  • Bell CG, Walley AJ, Froguel P (2005) The genetics of human obesity. Nat Rev Genet 6:221

    CAS  PubMed  Google Scholar 

  • Brown WV, Fujioka K, Wilson P, Woodworth KA (2009) Obesity: why be concerned? Am J Med 122:S4–11

    PubMed  Google Scholar 

  • Carlini DB, Chen Y, Stephan W (2001) The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 159:623–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci 101:3480–3485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury MN, Chakraborty S (2015) Codon usage pattern in human SPANX genes. Bioinformation 11:454

    PubMed  PubMed Central  Google Scholar 

  • Choudhury MN, Chakraborty S (2016) Which evolutionary forces dictate codon usage in human testis specific genes. Int J Pharm Pharm Sci 8:24–28

    CAS  Google Scholar 

  • Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29:569–574

    CAS  PubMed  Google Scholar 

  • Fu J, Murphy KA, Zhou M, Li YH, Lam VH, Tabuloc CA, Chiu JC, Liu Y (2016) Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev 30:1761–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenacre MJ (1984) Theory and applications of correspondence analysis. Acedemic Press, London

    Google Scholar 

  • Herrera BM, Lindgren CM (2010) The genetics of obesity. Curr Diabetes Rep 10:498–505

    CAS  Google Scholar 

  • Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33:673–689

    PubMed  PubMed Central  Google Scholar 

  • Hu FB, Li TY, Colditz GA, Willett WC, Manson JE (2003) Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 289:1785–1791

    PubMed  Google Scholar 

  • Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    CAS  PubMed  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352

    CAS  PubMed  Google Scholar 

  • Kokkoris P, Pi-Sunyer FX (2003) Obesity and endocrine disease. Endocrinol Metab Clin North Am 32:895–914

    CAS  PubMed  Google Scholar 

  • Kolb R, Sutterwala FS, Zhang W (2016) Obesity and cancer: inflammation bridges the two. Curr Opin Pharmacol 29:77–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci 95:9413–9417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobry J, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22:3174–3180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malakar AK, Halder B, Paul P, Chakraborty S (2016) Cytochrome P450 genes in coronary artery diseases: codon usage analysis reveals genomic GC adaptation. Gene 590:35–43

    CAS  PubMed  Google Scholar 

  • Martinez JA (2000) Body-weight regulation: causes of obesity. Proc Nutr Soc 59:337–345

    CAS  PubMed  Google Scholar 

  • Mauro VP, Chappell SA (2014) A critical analysis of codon optimization in human therapeutics. Trends Mol Med 20:604–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazumder TH, Uddin A, Chakraborty S (2016) Transcription factor gene GATA2: association of leukemia and nonsynonymous to the synonymous substitution rate across five mammals. Genomics 107:155–161

    CAS  PubMed  Google Scholar 

  • Mirsafian H, Mat Ripen A, Singh A, Teo PH, Merican AF, Mohamad SB (2014) A comparative analysis of synonymous codon usage bias pattern in human albumin superfamily. Sci World J. https://doi.org/10.1155/2014/639682

    Article  Google Scholar 

  • Powell JR, Moriyama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci 94:7784–7790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease–common variant… or not? Hum Mol Genet 11:2417–2423

    CAS  PubMed  Google Scholar 

  • Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C (2006) The human obesity gene map: the 2005 update. Obesity 14:529–644

    PubMed  Google Scholar 

  • Rocha EP (2004) The replication-related organization of bacterial genomes. Microbiology 150:1609–1627

    CAS  PubMed  Google Scholar 

  • Romero H, Zavala A, Musto H (2000) Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28:2084–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683

    CAS  PubMed  Google Scholar 

  • Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM (2007) The sounds of silence: synonymous mutations affect function. Pharmacogenomics 8(6):527–532

    CAS  PubMed  Google Scholar 

  • Sharp PM, Li W-H (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Matassi G (1994) Codon usage and genome evolution. Curr Opin Genet Dev 4:851–860

    CAS  PubMed  Google Scholar 

  • Shen W, Wang D, Ye B, Shi M, Ma L, Zhang Y, Zhao Z (2015) GC3-biased gene domains in mammalian genomes. Bioinformatics 31:3081–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stenico M, Lloyd AT, Sharp PM (1994) Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res 22:2437–2446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci 85:2653–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    CAS  PubMed  Google Scholar 

  • Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC 3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11:308

    PubMed  PubMed Central  Google Scholar 

  • Tillier ER, Collins RA (2000) Genome rearrangement by replication-directed translocation. Nat Genet 26:195–197

    CAS  PubMed  Google Scholar 

  • Uddin A, Chakraborty S (2018) Codon usage pattern of genes involved in central nervous system. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1173-y

    Article  PubMed  Google Scholar 

  • Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    CAS  PubMed  Google Scholar 

  • Yang J, Zhu T-Y, Jiang Z-X, Chen C, Wang Y-L, Zhang S, Jiang X-F, Wang T-T, Wang L, Xia W-H (2010) Codon usage biases in Alzheimer's disease and other neurodegenerative diseases. Protein Pept Lett 17:630–645

    CAS  PubMed  Google Scholar 

  • Zhang Z, Dai W, Dai D (2013a) Synonymous codon usage in TTSuV2: analysis and comparison with TTSuV1. PLoS ONE 8:e81469

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Dai W, Wang Y, Lu C, Fan H (2013b) Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). Adv Virol 158:145–154

    CAS  Google Scholar 

  • Zhao F, Yu C-H, Liu Y (2017) Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 45:8484–8492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Dang Y, Zhou M, Li L, Yu C-H, Fu J, Chen S, Liu Y (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci 113:E6117–E6125

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Assam University, Silchar, Assam, India.

Supporting information

S1—List of genes with accession number.

S2—List of Accession number for housekeeping genes.

S3—ENC values of obesity genes.

S4—ENC values of housekeeping genes.

S5—t test of codons between obesity genes and housekeeping genes.

Funding

Unfunded. No fund was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Supriyo Chakraborty or Yoon Shin Cho.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interests exists in this research work.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Barbhuiya, P.A., Paul, S. et al. Codon usage trend in genes associated with obesity. Biotechnol Lett 42, 1865–1875 (2020). https://doi.org/10.1007/s10529-020-02931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-02931-z

Keywords

Navigation