Skip to main content
Log in

Enhanced Biosorption of Sb(III) onto Living Rhodotorula mucilaginosa Strain DJHN070401: Optimization and Mechanism

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

How to effectively remove excess Sb(III) in the water environment by biosorption is receiving close attention in the international scientific community. To obtain the maximum biosorption efficiency, response surface methodology (RSM) was employed to optimize a total of 13 factors for biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The mechanism of biosorption and bioaccumulation was also studied. The results showed that biosorption reached 56.83% under the optimum conditions. Besides, pH, Fe2+, and temperature are significant influencing factors, and control of Ca2+ and Fe2+ has a beneficial impact on Sb(III) biosorption. The characterization explained that physical adsorption occurred readily on the loose and porous surface of DJHN070401 where carboxyl, amidogen, phosphate group, and polysaccharide C-O functional groups facilitated absorption by complexation with Sb(III), accompanied by ion exchange of Na+, Ca2+ ions with Sb(III). It was also noted that the living cell not only improved the removal efficiency in the presence of metabolic inhibitors but also prevented intracellular Sb(III) being re-released into the environment. The results of this study underpin improved and efficient methodology for biosorption of Sb(III) from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herath I, Vithanage M, Bundschuh J (2017) Antimony as a global dilemma: geochemistry, mobility, fate and transport. Environ Pollut 223:545–549. https://doi.org/10.1016/j.envpol.2017.01.057

    Article  PubMed  CAS  Google Scholar 

  2. Henckens MLCM, Driessen PPJ, Worrell E (2016) How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use. Resour Conserv Recy 108:54–62. https://doi.org/10.1016/j.resconrec.2016.01.012

    Article  Google Scholar 

  3. Macgregor K, Mackinnon G, Farmer JG et al (2015) Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Sci Total Environ 529:213–222. https://doi.org/10.1016/j.scitotenv.2015.04.039

    Article  PubMed  CAS  Google Scholar 

  4. He MC, Wang XQ, Wu FC et al (2012) Antimony pollution in China. Sci Total Environ 421–422:41–50. https://doi.org/10.1016/j.scitotenv.2011.06.009

    Article  PubMed  CAS  Google Scholar 

  5. Ungureanu G, Santos S, Boaventura R et al (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:326–342. https://doi.org/10.1016/j.jenvman.2014.12.051

    Article  PubMed  CAS  Google Scholar 

  6. Li JY, Zheng BH, He YZ et al (2018) Antimony contamination, consequences and removal techniques: a review. Ecotox Environ Safe 156:125–134. https://doi.org/10.1016/j.ecoenv.2018.03.024

    Article  CAS  Google Scholar 

  7. Vijayaraghavan K, Balasubramanian R (2011) Antimonite Removal Using Marine Algal Species. Ind Eng Chem Res 50(17):9864–9869. https://doi.org/10.1021/ie200776m

    Article  CAS  Google Scholar 

  8. Urík M, Polák F, Bujdoš M et al (2019) Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. Sci Total Environ 664:683–689. https://doi.org/10.1016/j.scitotenv.2019.02.033

    Article  PubMed  CAS  Google Scholar 

  9. He JS, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160(6):67–78. https://doi.org/10.1016/j.biortech.2014.01.068

    Article  PubMed  CAS  Google Scholar 

  10. Banerjee A, Sarkar P, Banerjee S (2016) Application of statistical design of experiments for optimization of As(V) biosorption by immobilized bacterial biomass. Ecol Eng 86:13–23. https://doi.org/10.1016/j.ecoleng.2015.10.015

    Article  Google Scholar 

  11. Sun WM, Xiao EZ, Kalin M et al (2016) Remediation of antimony-rich mine waters: assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environ Pollut 215(2):213–222. https://doi.org/10.1016/j.envpol.2016.05.008

    Article  PubMed  CAS  Google Scholar 

  12. Lialikova NN (1974) Stibiobacter senarmontii-a new microorganism oxidizing antimony. Mikrobiologiya 43(6):941–948

    CAS  Google Scholar 

  13. Li YC, Wu JX, Hu W et al (2018) A mechanistic analysis of the influence of iron-oxidizing bacteria on antimony(V) removal from water by microscale zero valent iron. J Chem Technol Biot 93:2527–2534. https://doi.org/10.1002/jctb.5606

    Article  CAS  Google Scholar 

  14. Wang HW, Chen FL, Mu SY et al (2013) Removal of antimony(Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation. Bioresour Technol 146(10):799–802. https://doi.org/10.1016/j.biortech.2013.08.002

    Article  PubMed  CAS  Google Scholar 

  15. Zhang GP, Ouyang XX, Li HX et al (2016) Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria. Int Biodeter Biodegr 115(12):148–155. https://doi.org/10.1016/j.ibiod.2016.08.007

    Article  CAS  Google Scholar 

  16. Wan CL, Wang L, Lee DJ et al (2014) Fungi aerobic granules and use of Fe(III)-treated granules for biosorption of antimony(V). J Taiwan Inst Chem E 45(5):2610–2614. https://doi.org/10.1016/j.jtice.2014.06.019

    Article  CAS  Google Scholar 

  17. Wang L, Wan CL, Lee DJ et al (2014) Biosorption of antimony(V) onto Fe(III)-treated aerobic granules. Bioresour Technol 158(2):351–354. https://doi.org/10.1016/j.biortech.2014.02.046

    Article  PubMed  CAS  Google Scholar 

  18. Li XJ, Chen P, Chen CL et al (2013) Bacillus sp treatment of wastewater containing antimony. Agr Sci Technol 14(9):1347–1351. https://doi.org/10.16175/j.cnki.1009-4229.2013.09.006

    Article  Google Scholar 

  19. Wu FC, Sun FH, Wu S et al (2012) Removal of antimony(III) from aqueous solution by freshwater cyanobacteria Microcystis biomass. Chem Eng J 183(4):172–179. https://doi.org/10.1016/j.cej.2011.12.050

    Article  CAS  Google Scholar 

  20. Li J, Wang Q, Zhang SZ et al (2013) Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil. Int Biodeter Biodegr 76:76–80. https://doi.org/10.1016/j.ibiod.2012.06.009

    Article  CAS  Google Scholar 

  21. Nguyen VK, Choi WY, Yu J et al (2017) Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils. Int J Hydrogen Energ 42(45):27832–27842. https://doi.org/10.1016/j.ijhydene.2017.08.056

    Article  CAS  Google Scholar 

  22. Yu C, Tang X, Li LS et al (2019) The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation. Bioresour Technol 283:138–147. https://doi.org/10.1016/j.biortech.2019.03.081

    Article  PubMed  CAS  Google Scholar 

  23. Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. https://doi.org/10.1016/j.chemosphere.2018.10.205

    Article  PubMed  CAS  Google Scholar 

  24. Reddy LVA, Wee YJ, Yun JS et al (2008) Optimization of alkaline protease production by batch culture of Bacillus sp RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour Technol 99(7):2242–2249. https://doi.org/10.1016/j.biortech.2007.05.006

    Article  PubMed  CAS  Google Scholar 

  25. Uluozlu OD, Sarı A, Tuzen M (2010) Biosorption of antimony from aqueous solution by lichen (Physcia tribacia). Chem Eng J 163(3):382–388. https://doi.org/10.1016/j.cej.2010.08.022

    Article  CAS  Google Scholar 

  26. Mittal VK, Bera S, Narasimhan SV et al (2013) Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous acid environment. Appl Surf Sci 266(2):272–279. https://doi.org/10.1016/j.apsusc.2012.12.010

    Article  CAS  Google Scholar 

  27. Guo XJ, Wu ZJ, He MC et al (2014) Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface. J Hazard Mater 276(9):339–345. https://doi.org/10.1016/j.jhazmat.2014.05.025

    Article  PubMed  CAS  Google Scholar 

  28. Luo SL, Xiao X, Xi Q et al (2011) Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP). J Hazard Mater 190(1–3):1079–1082. https://doi.org/10.1016/j.jhazmat.2011.04.023

    Article  PubMed  CAS  Google Scholar 

  29. Bhosale P, Gadre RV (2001) Production of β-carotene by a Rhodotorula glutinis mutant in sea water medium. Bioresour Technol 76(1):53–55. https://doi.org/10.1016/S0960-8524(00)00075-4

    Article  PubMed  CAS  Google Scholar 

  30. Bhagwat PK, Jhample SB, Dandge PB (2015) Statistical medium optimization for the production of collagenolytic protease by Pseudomonas sp. SUK using response surface methodology Microbiology 84(4):520–530. https://doi.org/10.1134/S0026261715040037

    Article  CAS  Google Scholar 

  31. Xi JH, He MC, Lin CY et al (2011) Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition. Microchem J 97(1):85–91. https://doi.org/10.1016/j.microc.2010.05.017

    Article  CAS  Google Scholar 

  32. Shin YM, Kwon TH, Kim KS et al (2001) Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl Environ Microb 67(3):1280–1283. https://doi.org/10.1128/AEM.67.3.1280-1283.2001

    Article  CAS  Google Scholar 

  33. Huang F, Dang Z, Guo CL et al (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloid Surface B 107:11–18. https://doi.org/10.1016/j.colsurfb.2013.01.062

    Article  CAS  Google Scholar 

  34. Guo HJ, Luo SL, Chen L et al (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp L14. Bioresour Technol 101(2):8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085

    Article  PubMed  CAS  Google Scholar 

  35. Ucun H, Bayhan YK, Kaya Y et al (2002) Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus Sylvestris. Bioresour Technol 85(2):155–158. https://doi.org/10.1016/S0960-8524(02)00086-X

    Article  PubMed  CAS  Google Scholar 

  36. Milová-žiaková B, Urík M, Boriová K et al (2016) Fungal solubilization of manganese oxide and its significance for antimony mobility. Int Biodeter Biodegr 114:157–163. https://doi.org/10.1016/j.ibiod.2016.06.011

    Article  CAS  Google Scholar 

  37. Pan CM, Fan YT, Xing Y et al (2008) Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour Technol 99(8):3146–3154. https://doi.org/10.1016/j.biortech.2007.05.055

    Article  PubMed  CAS  Google Scholar 

  38. Li XD, Jia R, Li PS et al (2009) Response surface analysis for enzymatic decolorization of Congo red by manganese peroxidase. J Mol Catal B-Enzym 56(1):1–6. https://doi.org/10.1016/j.molcatb.2008.03.013

    Article  CAS  Google Scholar 

  39. Wang HY, He YJ, Chai LY et al (2019) Highly-dispersed Fe2O3@C electrode materials for Pb2+ removal by capacitive deionization. Carbon 153:12–20. https://doi.org/10.1016/j.carbon.2019.06.066

    Article  CAS  Google Scholar 

  40. Iqbal M, Saeed A, Edyvean RGJ (2013) Bioremoval of antimony(III) from contaminated water using several plant wastes: optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata). Chem Eng J 225(3):192–201. https://doi.org/10.1016/j.cej.2013.03.079

    Article  CAS  Google Scholar 

  41. Sun FH, Wu FC, Liao HQ et al (2011) Biosorption of antimony(V) by freshwater cyanobacteria Microcystis biomass: chemical modification and biosorption mechanisms. Chem Eng J 171(3):1082–1090. https://doi.org/10.1016/j.cej.2011.05.004

    Article  CAS  Google Scholar 

  42. Guan XH, Ma J, Dong HR et al (2009) Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process. Water Res 43(15):3891–3899. https://doi.org/10.1016/j.watres.2009.06.008

    Article  PubMed  CAS  Google Scholar 

  43. Anand P, Isar J, Saran S et al (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97(8):1018–1025. https://doi.org/10.1016/j.biortech.2005.04.046

    Article  PubMed  CAS  Google Scholar 

  44. Tella M, Pokrovski GS (2009) Antimony(III) complexing with O-bearing organic ligands in aqueous solution: an X-ray absorption fine structure spectroscopy and potentiometric study. Geochim Cosmochim AC 73(2):268–290. https://doi.org/10.1016/j.gca.2008.10.014

    Article  CAS  Google Scholar 

  45. Huang F, Guo CL, Lu GN et al (2014) Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109:134–142. https://doi.org/10.1016/j.chemosphere.2014.01.066

    Article  PubMed  CAS  Google Scholar 

  46. Lin YB, Wang XY, Wang BP et al (2012) Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotox Environ Safe 77:7–17. https://doi.org/10.1016/j.ecoenv.2011.09.016

    Article  CAS  Google Scholar 

  47. Miao YY, Han FC, Pan BC et al (2014) Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. J Environ Sci 26(2):307–314. https://doi.org/10.1016/S1001-0742(13)60418-0

    Article  CAS  Google Scholar 

  48. Xiao X, Luo SL, Zeng GM et al (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101(6):1668–1674. https://doi.org/10.1016/j.biortech.2009.09.083

    Article  PubMed  CAS  Google Scholar 

  49. Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies. Water Res 40(19):3628–3636. https://doi.org/10.1016/j.watres.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  50. Malekzadeh F, Latifi AM, Shahamat M et al (2002) Effects of selected physical and chemical parameters on uranium uptake by the bacterium Chryseomonas MGF-48. World J Microb and Biot 18(7):599–602. https://doi.org/10.1023/A:1016806314721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 41672350, 51604113) and Scientific Research Project of the Hunan Provincial Education Department (No.18A184).

Author information

Authors and Affiliations

Authors

Contributions

R.-J.D. and C.-S.J. conceived and designed the study. B.-Z.R. and B.-L.H. analyzed the data. R.-J.D. and C.-S.J. wrote the paper. A.S.H. reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Ren-jian Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (DOCX 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Cs., Deng, Rj., Ren, Bz. et al. Enhanced Biosorption of Sb(III) onto Living Rhodotorula mucilaginosa Strain DJHN070401: Optimization and Mechanism. Curr Microbiol 77, 2071–2083 (2020). https://doi.org/10.1007/s00284-020-02025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02025-z

Navigation