Skip to main content

Advertisement

Log in

Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In recent years, the availability of reverse genetics systems for porcine reproductive and respiratory syndrome virus (PRRSV) has created new perspectives for the use of recombinant viruses as expression vectors. Most of these recombinant PRRSV vectors express foreign genes through either an independent transcription unit inserted in ORF1b and ORF2, or in ORF7 and the 3′ UTR. The aim of this study was to find an alternative site for foreign gene insertion into the PRRSV genome. Here, we constructed an infectious cDNA clone for a cell-adapted PRRSV strain, GXNN1396-P96. This cDNA-clone-derived recombinant virus (rGXAM) was comparable in its growth kinetics in MARC-145 cells to the parental virus, GX1396-P96. Using the infectious cDNA-clone, we inserted an independent transcription unit in ORF4 and ORF5a to generate a novel PRRSV-based recombinant virus expressing the green fluorescent protein (GFP) gene. Biological characterization of the recombinant virus, rGX45BSTRS-GFP, showed that it maintained similar growth characteristics but produced fewer infectious virions than the parental PRRSV. These data demonstrate that the ORF4 and ORF5a site is able to tolerate the insertion of foreign genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao QM, Ni YY, Cao D, Tian D, Yugo DM, Heffron CL, Overend C, Subramaniam S, Rogers AJ, Catanzaro N, LeRoith T, Roberts PC, Meng XJ (2018) Recombinant porcine reproductive and respiratory syndrome virus expressing membrane-bound interleukin-15 as an immunomodulatory adjuvant enhances NK and gammadelta T cell responses and confers heterologous protection. J Virol 92

  2. Chen Z, Zhou X, Lunney JK, Lawson S, Sun Z, Brown E, Christopher-Hennings J, Knudsen D, Nelson E, Fang Y (2010) Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. J Gen Virol 91:1047–1057

    Article  CAS  PubMed  Google Scholar 

  3. Choi HW, Nam E, Lee YJ, Noh YH, Lee SC, Yoon IJ, Kim HS, Kang SY, Choi YK, Lee C (2014) Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea. Vet Microbiol 170:232–245

    Article  CAS  PubMed  Google Scholar 

  4. de Vries AA, Glaser AL, Raamsman MJ, de Haan CA, Sarnataro S, Godeke GJ, Rottier PJ (2000) Genetic manipulation of equine arteritis virus using full-length cDNA clones: separation of overlapping genes and expression of a foreign epitope. Virology 270:84–97

    Article  PubMed  CAS  Google Scholar 

  5. de Vries AA, Glaser AL, Raamsman MJ, Rottier PJ (2001) Recombinant equine arteritis virus as an expression vector. Virology 284:259–276

    Article  PubMed  CAS  Google Scholar 

  6. Di H, Morantz EK, Sadhwani H, Madden JC Jr, Brinton MA (2018) Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 525:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang Y, Rowland RR, Roof M, Lunney JK, Christopher-Hennings J, Nelson EA (2006) A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: expression of green fluorescent protein in the Nsp2 region. J Virol 80:11447–11455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang Y, Christopher-Hennings J, Brown E, Liu H, Chen Z, Lawson SR, Breen R, Clement T, Gao X, Bao J, Knudsen D, Daly R, Nelson E (2008) Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development. J Gen Virol 89:3086–3096

    Article  CAS  PubMed  Google Scholar 

  9. Fang Y, Snijder EJ (2010) The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res 154:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UBR, Atkins JF, Snijder EJ, Posthuma CC (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92:1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao F, Qu Z, Li L, Yu L, Jiang Y, Zhou Y, Yang S, Zheng H, Huang Q, Tong W, Tong G (2016) Recombinant porcine reproductive and respiratory syndrome virus expressing luciferase genes provide a new indication of viral propagation in both permissive and target cells. Res Vet Sci 107:132–140

    Article  PubMed  Google Scholar 

  12. Gao F, Jiang Y, Li G, Zhou Y, Yu L, Li L, Tong W, Zheng H, Zhang Y, Yu H, Shan T, Yang S, Liu H, Zhao K, Tong G (2018) Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine 36:3269–3277

    Article  PubMed  Google Scholar 

  13. Han J, Wang Y, Faaberg KS (2006) Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res 122:175–182

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Liu G, Wang Y, Faaberg KS (2007) Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol 81:9878–9890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han M, Ke H, Du Y, Zhang Q, Yoo D (2017) Reverse genetics for porcine reproductive and respiratory syndrome virus. Methods Mol Biol 1602:29–46

    Article  CAS  PubMed  Google Scholar 

  16. He W, Wei Y, Yao J, Xie X, Huang J, Lin S, Ouyang K, Chen Y, Huang W, Wei Z (2018) Effect of an 88-amino-acid deletion in nsp2 of porcine reproductive and respiratory syndrome virus on virus replication and cytokine responses in vitro. Arch Virol 163:1489–1501

    Article  CAS  PubMed  Google Scholar 

  17. Hong S, Wei Y, Lin S, Huang J, He W, Yao J, Chen Y, Kang O, Huang W, Wei Z (2019) Genetic analysis of porcine productive and respiratory syndrome virus between 2013 and 2014 in Southern parts of China: identification of several novel strains with amino acid deletions or insertions in nsp2. BMC Vet Res 15:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kedkovid R, Nuntawan Na Ayudhya S, Amonsin A, Thanawongnuwech R (2010) NSP2 gene variation of the North American genotype of the Thai PRRSV in central Thailand. Virol J 7:340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kim DY, Kaiser TJ, Horlen K, Keith ML, Taylor LP, Jolie R, Calvert JG, Rowland RR (2009) Insertion and deletion in a non-essential region of the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus: effects on virulence and immunogenicity. Virus Genes 38:118–128

    Article  CAS  PubMed  Google Scholar 

  21. Lee C, Calvert JG, Welch SK, Yoo D (2005) A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology 331:47–62

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Wang G, Wang Y, Zhang C, Huang B, Li Q, Li L, Xue B, Ding P, Cai X, Wang C, Zhou EM (2015) Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF. Vet Immunol Immunopathol 168:40–48

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Wang G, Wang Y, Zhang C, Wang X, Huang B, Li Q, Li L, Xue B, Ding P, Syed SF, Wang C, Cai X, Zhou EM (2015) Rescue and evaluation of a recombinant PRRSV expressing porcine Interleukin-4. Virol J 12:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lv J, Zhang J, Sun Z, Liu W, Yuan S (2008) An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome. J Gen Virol 89:2075–2079

    Article  CAS  PubMed  Google Scholar 

  25. Meulenberg JJ, Bos-de Ruijter JN, Wensvoort G, Moormann RJ (1998) An infectious cDNA clone of porcine reproductive and respiratory syndrome virus. Adv Exp Med Biol 440:199–206

    Article  CAS  PubMed  Google Scholar 

  26. Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227:385–392

    Article  PubMed  Google Scholar 

  28. Pasternak AO, Spaan WJ, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87:1403–1421

    Article  CAS  PubMed  Google Scholar 

  29. Pei Y, Hodgins DC, Wu J, Welch SK, Calvert JG, Li G, Du Y, Song C, Yoo D (2009) Porcine reproductive and respiratory syndrome virus as a vector: immunogenicity of green fluorescent protein and porcine circovirus type 2 capsid expressed from dedicated subgenomic RNAs. Virology 389:91–99

    Article  CAS  PubMed  Google Scholar 

  30. Sang Y, Shi J, Sang W, Rowland RR, Blecha F (2012) Replication-competent recombinant porcine reproductive and respiratory syndrome (PRRS) viruses expressing indicator proteins and antiviral cytokines. Viruses 4:102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79(Pt 5):961–979

    Article  CAS  PubMed  Google Scholar 

  32. Sun L, Li Y, Liu R, Wang X, Gao F, Lin T, Huang T, Yao H, Tong G, Fan H, Wei Z, Yuan S (2013) Porcine reproductive and respiratory syndrome virus ORF5a protein is essential for virus viability. Virus Res 171:178–185

    Article  CAS  PubMed  Google Scholar 

  33. Tian D, Zheng H, Zhang R, Zhuang J, Yuan S (2011) Chimeric porcine reproductive and respiratory syndrome viruses reveal full function of genotype 1 envelope proteins in the backbone of genotype 2. Virology 412:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Tian D, Sooryanarain H, Matzinger SR, Gauger PC, Karuppannan AK, Elankumaran S, Opriessnig T, Meng XJ (2017) Protective efficacy of a virus-vectored multi-component vaccine against porcine reproductive and respiratory syndrome virus, porcine circovirus type 2 and swine influenza virus. J Gen Virol 98:3026–3036

    Article  CAS  PubMed  Google Scholar 

  35. Truong HM, Lu Z, Kutish GF, Galeota J, Osorio FA, Pattnaik AK (2004) A highly pathogenic porcine reproductive and respiratory syndrome virus generated from an infectious cDNA clone retains the in vivo virulence and transmissibility properties of the parental virus. Virology 325:308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJ, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 96:12056–12061

    Article  PubMed  Google Scholar 

  37. Wang C, Huang B, Kong N, Li Q, Ma Y, Li Z, Gao J, Zhang C, Wang X, Liang C, Dang L, Xiao S, Mu Y, Zhao Q, Sun Y, Almazan F, Enjuanes L, Zhou EM (2013) A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Vet Res 44:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang C, Meng H, Gao Y, Gao H, Guo K, Almazan F, Sola I, Enjuanes L, Zhang Y, Abrahamyan L (2017) Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Vet Res 48:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang L, Hou J, Gao L, Guo XK, Yu Z, Zhu Y, Liu Y, Tang J, Zhang H, Feng WH (2014) Attenuation of highly pathogenic porcine reproductive and respiratory syndrome virus by inserting an additional transcription unit. Vaccine 32:5740–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Sun L, Li Y, Lin T, Gao F, Yao H, He K, Tong G, Wei Z, Yuan S (2013) Development of a differentiable virus via a spontaneous deletion in the nsp2 region associated with cell adaptation of porcine reproductive and respiratory syndrome virus. Virus Res 171:150–160

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Liang Y, Han J, Burkhart KM, Vaughn EM, Roof MB, Faaberg KS (2008) Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence. Virology 371:418–429

    Article  CAS  PubMed  Google Scholar 

  42. Wei Z, Tian D, Sun L, Lin T, Gao F, Liu R, Tong G, Yuan S (2012) Influence of N-linked glycosylation of minor proteins of porcine reproductive and respiratory syndrome virus on infectious virus recovery and receptor interaction. Virology 429:1–11

    Article  CAS  PubMed  Google Scholar 

  43. Wissink EH, Kroese MV, van Wijk HA, Rijsewijk FA, Meulenberg JJ, Rottier PJ (2005) Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J Virol 79:12495–12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, Nelson EA (2001) A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287:183–191

    Article  CAS  PubMed  Google Scholar 

  45. Yoshii M, Okinaga T, Miyazaki A, Kato K, Ikeda H, Tsunemitsu H (2008) Genetic polymorphism of the nsp2 gene in North American type–porcine reproductive and respiratory syndrome virus. Arch Virol 153:1323–1334

    Article  CAS  PubMed  Google Scholar 

  46. Yu D, Lv J, Sun Z, Zheng H, Lu J, Yuan S (2009) Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus. Virology 383:22–31

    Article  CAS  PubMed  Google Scholar 

  47. Yuan S, Wei Z (2008) Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins. Sci China C Life Sci 51:271–279

    Article  CAS  PubMed  Google Scholar 

  48. Zheng H, Sun Z, Zhu XQ, Long J, Lu J, Lv J, Yuan S (2010) Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 148:8–16

    Article  CAS  PubMed  Google Scholar 

  49. Zheng H, Zhang K, Zhu XQ, Liu C, Lu J, Gao F, Zhou Y, Zheng H, Lin T, Li L, Tong G, Wei Z, Yuan S (2014) Genetic manipulation of a transcription-regulating sequence of porcine reproductive and respiratory syndrome virus reveals key nucleotides determining its activity. Arch Virol 159:1927–1940

    Article  CAS  PubMed  Google Scholar 

  50. Zhou L, Zhang J, Zeng J, Yin S, Li Y, Zheng L, Guo X, Ge X, Yang H (2009) The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J Virol 83:5156–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Dev Sooranna, Imperial College, London, for editing the manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (nos. 31660716 and 31372444) and the Guangxi Natural Science Foundation (no. 2018GXNSFDA281021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzhang Wei.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., He, W., Li, Q. et al. Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a. Arch Virol 165, 1803–1813 (2020). https://doi.org/10.1007/s00705-020-04679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04679-3

Navigation