Skip to main content
Log in

Free boundary effects and representative volume elements in 3D printed Ti–6Al–4V gyroid structures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The adoption of selective laser melting (SLM) for fabrication of porous titanium has resulted in many new investigations into the complex design parameters associated with porous architecture of high spatial resolution. The development of meta-materials has included research into the effects of unit cell architecture (strut versus sheet), porosity, pore size, and other factors on the performance of metallic scaffolds. The current study examined the interactive effects of varying the gyroid sheet unit cell size and overall specimen size on the compressive behavior of Ti–6Al–4V ELI porous scaffolds manufactured via SLM. The increasing unit cell size relative to specimen geometry was found to decrease the compressive strength and stiffness of the overall structure and shift the material fracture mode. The understanding of the relationship between unit cell size and specimen geometry can be used to optimize mechanical properties of implants with constrained volumes and pore/wall size requirements to optimize properties of porous titanium implants for strength and osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
TABLE I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. L. Bai, C. Gong, X. Chen, Y. Sun, J. Zhang, L. Cai, S. Zhu, and S.Q. Xie: Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals 9, 1004 (2019).

    CAS  Google Scholar 

  2. R. Waulthle, S.M. Ahmadi, S.A. Yavari, M. Mulier, A.A. Zadpoor, and H. Weinans: Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Mater. Sci. Eng., C 54, 94–100 (2015).

    Google Scholar 

  3. L. Maini, A. Sharma, S. Jha, and A. Tiwari: Three-dimensional printing and patient-specific pre-contoured plate: Future of acetabulum fracture fixation? Eur. J. Trauma Emerg. Surg. 44, 215–224 (2018).

    CAS  Google Scholar 

  4. T.J. Dekker, J.R. Steele, and A.E. Federer: Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int. 39, 916–921 (2018).

    Google Scholar 

  5. J. Ni, H. Ling, S. Zhang, Z. Wang, Z. Peng, C. Benyshek, R. Zan, A.K. Miri, Z. Li, X. Zhang, J. Lee, K-J. Lee, H-J. Kim, P. Tebon, T. Hoffman, M.R. Dokmeci, N. Ashammakhi, X. Li, and A. Khademhosseini: Three-dimensional printing of metals for biomedical applications. Mater. Today Bio 3, 100024 (2019).

    CAS  Google Scholar 

  6. L.M. Ricles, J.C. Coburn, and M. Di Prima: Regulating 3D-printed medical products. Sci. Transl. Med. 10, 461 (2018).

    Google Scholar 

  7. H.B. Rotaru, H. Stan, I.S. Florian, R. Schumacher, Y-T. Park, S-G. Kim, H. Chezan, N. Balc, and M. Baciut: Cranioplasty with custom-made implants: Analyzing the cases of 10 patients. J. Oral Maxillofac. Surg. 70, 169–176 (2012).

    Google Scholar 

  8. K.S. Hamid, S.G. Parekh, and S.B. Adams: Salvage of severe foot and ankle trauma with 3D printed scaffold. Foot Ankle Int. 37, 433–439 (2016).

    Google Scholar 

  9. K.B. Trauner: The emerging role of 3D printing in arthroplasty and orthopedics. J. Arthroplasty 33, 2352–2354 (2018).

    Google Scholar 

  10. D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, and T. Kokubo: Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 7, 1398–1406 (2011).

    CAS  Google Scholar 

  11. A. Yanez, A. Cuadrado, O. Martel, H. Afonso, and D. Monopoli: Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect construction. Mater. Des. 140, 21–29 (2018).

    CAS  Google Scholar 

  12. A.T. Sidambe: Biocompatibility of advanced manufactured titanium implants—A review. Materials 7, 8168–8188 (2014).

    Google Scholar 

  13. M. Niinomi: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng., A 243, 231–236 (1998).

    Google Scholar 

  14. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 54, 397–425 (2009).

    CAS  Google Scholar 

  15. T.B. Sercombe: Failure modes in high strength and stiffness to weight scaffolds produced by selective laser melting. Mater. Des. 67, 501–508 (2015).

    CAS  Google Scholar 

  16. Y. Chen, J.E. Frith, A. Dehghan-Manshadi, H. Attar, D. Kent, N.D.M. Soro, M.J. Bermingham, M.S. Dargusch: Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 75, 169–174 (2017).

    CAS  Google Scholar 

  17. J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Zargarian, and S. Schmauder: The relationship between deformation mechanisms and additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 70, 28–42 (2017).

    CAS  Google Scholar 

  18. M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li: Biomedical titanium alloys with Young's moduli close to that of cortical bone. Regener. Biomater. 3, 173–185 (2016).

    CAS  Google Scholar 

  19. B. Vamsi Krishna, S. Bose, and A. Bandyopadhyay: Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 3, 997–1006 (2007).

    Google Scholar 

  20. C.N. Kelly, J. Francovich, S. Julmi, D. Safranski, R.E. Guldberg, H.J. Maier, and K. Gall: Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomater. 94, 610–626 (2019).

    CAS  Google Scholar 

  21. D. Barba, E. Alabort, and R.C. Reed: Synthetic bone: Design by additive manufacturing. Acta Biomater. 97, 637–656 (2019).

    CAS  Google Scholar 

  22. O. Alketan, R. Rowshan, and R.K. Abu Al-Rub: Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit. Manuf. 19, 167–183 (2018).

    Google Scholar 

  23. C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, and W. Zhu: Microstructure and mechanical properties of aluminum alloy cellular lattice structures by direct metal laser sintering. Mater. Sci. Eng., A 628, 238–246 (2015).

    CAS  Google Scholar 

  24. L. Yuan, S. Ding, and C. Wen: Additive manufacturing technology for porous metal implant applications and triply minimal surface structures: A review. Bioact. Mater. 4, 56–70 (2019).

    Google Scholar 

  25. S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, and A.A. Zadpoor: Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 34, 106–115 (2014).

    CAS  Google Scholar 

  26. A. Cheng, A. Humayun, B.D. Boyan, and Z. Schwartz: Enhanced osteoblast response to porosity and resolution of additively manufactured Ti–6Al–4V constructs with trabeculae-inspired porosity. 3D Print. Addit. Manuf. 3, 10–21 (2016).

    Google Scholar 

  27. C.N. Kelly, A.T. Miller, S.J. Hollister, R.E. Guldberg, and K. Gall: Design and structure-function characterization of 3D printed synthetic porous biomaterials for tissue engineering. Adv. Healthcare Mater. 7, 1701905 (2017).

    Google Scholar 

  28. H. Karcher: The triply periodic minimal surfaces of alan schoen and their constant mean curvature companions. Manuscripta Math. 64, 291–357 (1989).

    Google Scholar 

  29. A.H. Schoen: Infinite Periodic Minimal Surfaces Without Self-Intersections (National Aeronautics and Space Administration, Electronics Research Center Cambridge, Massachusetts, 1970).

    Google Scholar 

  30. E. Yang, M. Leary, B. Lozanovski, D. Downing, M. Mazur, A. Sarker, A. Khorasani, A. Jones, T. Maconachie, S. Bateman, M. Easton, M. Qian, P. Choong, and M. Brandt: Effect of geometry on the mechanical properties of Ti–6Al–4V gyroid structures fabricated via SLM: A numerical study. Mater. Des. 184, 108165 (2019).

    CAS  Google Scholar 

  31. S. Ma, Q. Tang, Q. Feng, J. Song, X. Han, and F. Guo: Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J. Mech. Behav. Biomed. Mater. 93, 158–169 (2019).

    CAS  Google Scholar 

  32. C. Yan, L. Hao, A. Hussein, and P. Young: Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 51, 61–73 (2015).

    CAS  Google Scholar 

  33. F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, and A.A. Zadpoor: Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 53, 572–584 (2017).

    CAS  Google Scholar 

  34. A.A. Zadpoor, R. Uyttendaele, L.E. Fratila-Apachitei, and S. Callens: Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232, 119739 (2020).

    Google Scholar 

  35. X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, and W.Y. Yeong: Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng., C 76, 1328–1343 (2017).

    CAS  Google Scholar 

  36. C.N. Kelly, N.T. Evans, C.W. Irvin, S.C. Chapman, K. Gall, and D.L. Safranski: The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti–6Al–4V fabricated by selective laser melting. Mater. Sci. Eng., A 98, 726–736 (2019).

    CAS  Google Scholar 

  37. E.W. Andrews, G. Gioux, P. Onck, and L.J. Gibson: Size effects in ductile cellular solids. Part II: Experimental results. Int. J. Mech. Sci. 43, 701–713 (2001).

    Google Scholar 

  38. L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, and W.F. Lu: Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit. Manuf. 23, 505–515 (2018).

    CAS  Google Scholar 

  39. M. Ashby, T. Evans, N. Fleck, and J. Hutchinson: Metal Foams: A Design Guide (Butterworth-Heinemann, Boston, Massachusetts, 2000).

    Google Scholar 

  40. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 16, 24–29 (2017).

    CAS  Google Scholar 

  41. C. Yan, L. Hao, A. Hussein, and D. Raymont: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tool Manufact. 62, 32–38 (2012).

    Google Scholar 

  42. N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, and S. Matsuda: Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng., C 59, 690–701 (2016).

    CAS  Google Scholar 

  43. J.P. Li, P. Habibovic, M. van den Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, and K. de Groot: Bone ingrowth in porous titanium implants produces by 3D fiber deposition. Biomaterials 28, 2810–2820 (2007).

    CAS  Google Scholar 

  44. S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, and D. Pasini: High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 30, 345–356 (2016).

    CAS  Google Scholar 

  45. B. Zhang, X. Pei, C. Zhou, Y. Fan, Q. Jiang, A. Ronca, U. D’Amora, Y. Chen, H. Li, Y. Sun, and X. Zhang: The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater. Des. 152, 30–39 (2018).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cambre Kelly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, A., Kelly, C. & Gall, K. Free boundary effects and representative volume elements in 3D printed Ti–6Al–4V gyroid structures. Journal of Materials Research 35, 2547–2555 (2020). https://doi.org/10.1557/jmr.2020.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.105

Navigation