Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Photomechanical materials driven by photoisomerization or photodimerization

Abstract

Light is an adjustable, multiparameter stimulus that can be used for fine, noncontact manipulation or as an energy supply. Recently, deformable light-controlled macroscopic materials have gained attention both from a fundamental research perspective and for various actuator applications. The main challenge in developing these materials is converting the photoinduced effects at the molecular level to macroscopic movements in the working pieces; a variety of mechanisms have been proposed for this. Both crystals and polymers containing photoreactive compounds have been intensively studied and have exhibited different advantages. Crosslinked liquid crystalline polymers have also attracted attention because they combine the advantages of macroscopically deformable polymers and crystals. In most circumstances, photodeformable materials contain photoreactive molecules that absorb light of a specific wavelength and thus undergo structural changes. This is followed by concomitant changes in their physical and chemical properties, resulting in macroscopic mechanical movements. Therefore, various photoreactions have been studied to induce macroscopic deformations using light. The purpose of this review is to highlight key examples in the design of photodeformable materials using various photoreactions and to introduce some new and evolving trends by highlighting recent research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. JDW Madden, Vandesteeg NA, Anquetil PA, PGA Madden, Takshi A, Pytel RZ, et al. Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng. 2004;29:706–28.

    Article  Google Scholar 

  2. Hu Y, Li Z, Lan T, Chen W. Photoactuators for direct optical‐to‐mechanical energy conversion: from nanocomponent assembly to macroscopic deformation. Adv Mater. 2016;28:10548–56.

    Article  PubMed  CAS  Google Scholar 

  3. Ionov L. Polymeric actuators. Langmuir. 2015;31:5015–24.

    Article  PubMed  CAS  Google Scholar 

  4. Shankar MR. Photomechanical effects to enable devices. In: White TJ, edtor. Photomechanical materials, composites, and systems: wireless transduction of light into work. Hoboken, New Jersey: Wiley; 2017. p. 369–87.

  5. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature. 2007;446:778–81.

    Article  PubMed  CAS  Google Scholar 

  6. Koshima H, Ojima N, Uchimoto H. Mechanical motion of azobenzene crystals upon photoirradiation. J Am Chem Soc. 2009;131:6890–1.

    Article  PubMed  CAS  Google Scholar 

  7. Koshima H, Takechi K, Uchimoto H, Shiro M, Hashizume D. Photomechanical bending of salicylideneaniline crystals. Chem Commun. 2011;47:11423–5.

    Article  CAS  Google Scholar 

  8. Koshima H, Nakaya H, Uchimoto H, Ojima N. Photomechanical motion of furylfulgide crystals. Chem Lett. 2012;41:107–9.

    Article  CAS  Google Scholar 

  9. Taniguchi T, Kubota A, Moritoki T, Asahi T, Koshima H. Two-step photomechanical motion of a dibenzobarrelene crystal. RSC Adv. 2018;8:34314–20.

    Article  CAS  Google Scholar 

  10. Lan T, Chen W. Hybrid nanoscale organic molecular crystals assembly as a photon-controlled actuator. Angew Chem Int Ed. 2013;52:6496–500.

    Article  CAS  Google Scholar 

  11. Al-Kaysi RO, Müller AM, Bardeen CJ. Photochemically driven shape changes of crystalline organic nanorods. J Am Chem Soc. 2006;128:15938–9.

    Article  PubMed  CAS  Google Scholar 

  12. Mandal R, Garai A, Peli S, Datta PK, Biradha K. Photoinduced bending of single crystals of a linear Bis-Olefin via water-templated solid-state [2+2] photopolymerization reaction. Chem Eur J. 2020;26:396–400.

    Article  PubMed  CAS  Google Scholar 

  13. Samanta R, Ghosh S, Devarapalli R, Reddy CM. Visible light mediated photopolymerization in single crystals: photomechanical bending and thermomechanical unbending. Chem Mater. 2018;30:577–81.

    Article  CAS  Google Scholar 

  14. Kitagawa D, Tsujioka H, Tong F, Dong X, Bardeen CJ, Kobatake S. Control of photomechanical crystal twisting by illumination direction. J Am Chem Soc. 2018;140:4208–12.

    Article  PubMed  CAS  Google Scholar 

  15. Kitagawa D, Nishi H, Kobatake S. Photoinduced twisting of a photochromic diarylethene crystal. Angew Chem Int Ed. 2013;52:9320–2.

    Article  CAS  Google Scholar 

  16. Tong F, Al-Haidar M, Zhu L, Al-kaysi RO, Bardeen CJ. Photoinduced peeling of molecular crystals. Chem Commun. 2019;55:3709–12.

    Article  CAS  Google Scholar 

  17. Uchida E, Azumi R, Norikane Y. Light-induced crawling of crystals on a glass surface. Nat Commun. 2015;6:7310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Medishetty R, Husain A, Bai Z, Runcevski T, Dinnebier RE, Naumov P, et al. Single crystals popping under UV light: a photosalient effect triggered by a [2+2] cycloaddition reaction. Angew Chem Int Ed. 2014;53:5907–11.

    Article  CAS  Google Scholar 

  19. Nath NK, Runcěvski T, Lai CY, Chiesa M, Dinnebier RE, Naumov P. Surface and bulk effects in photochemical reactions and photomechanical effects in dynamic molecular crystals. J Am Chem Soc. 2015;137:13866–75.

    Article  PubMed  CAS  Google Scholar 

  20. Hatano E, Morimoto M, Imai T, Hyodo K, Fujimoto A, Nishimura R, et al. Photosalient phenomena that mimic impatiens are observed in hollow crystals of diarylethene with a perfluorocyclohexene ring. Angew Chem Int Ed. 2017;56:12576–80.

    Article  CAS  Google Scholar 

  21. Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E. Mechanically responsive molecular crystals. Chem Rev. 2015;115:12440–90.

    Article  PubMed  CAS  Google Scholar 

  22. Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–277.

    Article  PubMed  CAS  Google Scholar 

  23. Stoychev G, Kirillova A, Ionov L. Light-responsive shape-changing polymers. Adv Opt Mater. 2019;7:1900067.

    Article  CAS  Google Scholar 

  24. Kim T, Zhu L, Al-Kaysi RO, Bardeen CJ. Organic photomechanical materials. ChemPhysChem. 2014;15:400–14.

    Article  PubMed  CAS  Google Scholar 

  25. Merian E. Steric factor influencing the dyeing of hydrophobic fibers. Text Res J. 1966;36:612–8.

    Article  CAS  Google Scholar 

  26. Hosono N, Yoshikawa M, Furukawa H, Totani K, Yamada K, Watanabe T, et al. Photoinduced deformation of rigid azobenzene-containing polymer networks. Macromolecules. 2013;46:1017–26.

    Article  CAS  Google Scholar 

  27. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun. 2012;3:1270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dunne A, Delaney C, Florea L, Diamond D. Solvato-morphologically controlled, reversible NIPAAm hydrogel photoactuators. RSC Adv. 2016;6:83296–302.

    Article  CAS  Google Scholar 

  29. Schiphorst J, Saez J, Diamond D, Benito-Lopez F, Sche APHJ. Light-responsive polymers for microfluidic applications. Lab Chip. 2018;18:699–709.

    Article  PubMed  Google Scholar 

  30. Jin Y, Paris SIM, Rack JJ. Bending materials with light: photoreversible macroscopic deformations in a disordered polymer. Adv Mater. 2011;37:4312–7.

    Article  CAS  Google Scholar 

  31. Liao J, Yang M, Liu Z, Zhang H. Fast photoinduced deformation of hydrogen-bonded supramolecular polymers containing a α-cyanostilbene derivative. J Mater Chem A. 2019;7:2002–8.

    Article  CAS  Google Scholar 

  32. He J, Zhao Y, Zhao Y. Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Mater. 2009;5:308–10.

    Article  CAS  Google Scholar 

  33. Nagata M, Yamamoto Y. Synthesis and characterization of photocrosslinked poly(ε‐caprolactone)s showing shape‐memory properties. J Polym Sci A. 2009;47:2422–33.

    Article  CAS  Google Scholar 

  34. Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434:879–82.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo M, Takemoto M, Fukae R, Kawatsuki N. Photomobile polymers from commercially available compounds: photoinduced deformation of side-chain polymers containing hydrogen-bonded photoreactive compounds. Polym J. 2012;44:410–4.

    Article  CAS  Google Scholar 

  36. Kondo M, Matsuda T, Fukae R, Kawatsuki N. Photoinduced deformation of polymer fibers with anthracene side groups. Chem Lett. 2010;39:234–5.

    Article  CAS  Google Scholar 

  37. Kondo M, Takemoto M, Matsuda T, Fukae R, Kawatsuki N. Photoinduced change in mechanical properties of anthracene polymers containing flexible side chains. Bull Chem Soc Jpn. 2010;83:1333–7.

    Article  CAS  Google Scholar 

  38. Ikeda T, Mamiya J, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed. 2007;46:506–28.

    Article  CAS  Google Scholar 

  39. Shang Y, Wang J, Ikeda T, Jiang L. Bio-inspired liquid crystal actuator materials. J Mater Chem C. 2019;7:3413–28.

    Article  CAS  Google Scholar 

  40. de Gennes PG. Reflexions sur un type de polymeres nematiques. C R Seances Acad Sci Ser B. 1975;281:101–3.

    Google Scholar 

  41. Küpfer J, Finkelmann H. Nematic liquid single-crystal elastomers. Makromol Chem Rapid Commun. 1991;12:717–26.

    Article  Google Scholar 

  42. Finkelmann H, Nishikawa E, Pereira GG, Warner M. A new opto-mechanical effect in solids. Phys Rev Lett. 2001;87:015501.

    Article  PubMed  CAS  Google Scholar 

  43. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed. 2008;47:4986–8.

    Article  CAS  Google Scholar 

  44. da Cunha MP, Foelen Y, van Raak RJH, Murphy JN, Engels TAP, Debije MG, et al. An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators. Adv Optical Mater. 2019;7:1801643.

    Article  CAS  Google Scholar 

  45. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–10.

    Article  PubMed  CAS  Google Scholar 

  46. Lee KM, Kroener H, Vaia RA, Bunning TJ, White TJ. Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter. 2011;7:4318–24.

    Article  CAS  Google Scholar 

  47. Ube T, Ikeda T. Photomobile polymer materials with complex 3D deformation, continuous motions, self-regulation, and enhanced processability. Adv Optical Mater. 2019;7:1900380.

    Article  CAS  Google Scholar 

  48. Mamiya J, Yoshitake A, Kondo M, Yu Y, Ikeda T. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J Mater Chem. 2008;18:63–5.

    Article  CAS  Google Scholar 

  49. Ozawa T, Kondo M, Mamiya J, Ikeda T. Enhancement of mechanical stability in hydrogen- bonded photomobile materials with chemically modified single-walled carbon nanotubes. J Mater Chem C. 2014;2:2313–5.

    Article  CAS  Google Scholar 

  50. Ube T, Takado K, Ikeda T. Photomobile materials with inter- penetrating polymer networks composed of liquid-crystalline and amorphous polymers. J Mater Chem C. 2015;3:8006–9.

    Article  CAS  Google Scholar 

  51. Ube T, Kawasaki K, Ikeda T. Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv Mater. 2016;28:8212–7.

    Article  PubMed  CAS  Google Scholar 

  52. Ube T. Development of novel network structures in crosslinked liquid-crystalline polymers. Polym J. 2019;51:983–8.

    Article  CAS  Google Scholar 

  53. Priimagi A, Barrett CJ, Shishido A. Recent twists in photoactuation and photoalignment control. J Mater Chem C. 2014;2:7155–62.

    Article  CAS  Google Scholar 

  54. Mamiya J, Kuriyama A, Yokota N, Yamada M, Ikeda T. Photomobile polymer materials: photoresponsive behavior of cross‐linked liquid‐crystalline polymers with mesomorphic diarylethenes. Chem Eur J. 2015;21:3174–7.

    Article  PubMed  CAS  Google Scholar 

  55. Ryabchun R, Quan L, Federico L, Aprahamian L, Katsonis N. Shape-persistent actuators from hydrazone photoswitches. J Am Chem Soc. 2019;141:1196–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kondo M, Makino K, Miyake K, Matsuo Y, Fukae R, Kawatsuki N. Coatable photomobile polymer films using spring-like photochromic compounds. Macromol Chem Phys. 2018;219:I1700602.

    Article  CAS  Google Scholar 

  57. Kosaka Y, Kato T, Uryu T. Synthesis and the smectic mesophase of copolymers containing a mesogenic (carbazolylmethylene)aniline group as the electron donor and a (4’-Nitrobenzylidene)aniline group as the electron acceptor. Macromolecules. 1994;27:2658–63.

    Article  CAS  Google Scholar 

  58. Kawatsuki N, Miyake K, Kondo M. Facile fabrication, photoinduced orientation, and birefringent pattern control of photoalignable films comprised of N‐benzylideneaniline side groups. ACS Macro Lett. 2015;4:764–8.

    Article  CAS  Google Scholar 

  59. Kawatsuki N, Matsushita H, Washio T, Kozuki J, Kondo M, Sasaki T, et al. Photoinduced orientation of photoresponsive polymers with N‐benzylideneaniline derivative side groups. Macromolecules. 2014;47:324–32.

    Article  CAS  Google Scholar 

  60. Kawatsuki N, Inada S, Fujii R, Kondo M. Photoinduced birefringent pattern and photoinactivation of liquid-crystalline copolymer films with benzoic acid and phenylaldehyde side groups. Langmuir. 2018;34:2089–95.

    Article  PubMed  CAS  Google Scholar 

  61. Kondo M, Yamaguchi W, Fukae R, Kawatsuki N. Area-selective photodeformation behavior of N-benzylideneaniline liquid crystalline polymeric films prepared with sublimed crosslinker. Mol Cryst Liq Cryst. 2018;676:9–16.

    Article  CAS  Google Scholar 

  62. Kondo M, Nizuka R, Kotera K, Yamaguchi W, Fukae R, Kawatsuki N. Photoinduced bending behavior of uniaxial aligned crosslinked N-benzylidene aniline liquid crystalline polymer films. Mol. Cryst. Liq. Cryst.

  63. Chung JW, Yoon SJ, An BK, Park SY. High-contrast on/off fluorescence switching via reversible E–Z isomerization of diphenylstilbene containing the α-cyanostilbenic moiety. J Phys Chem C. 2013;117:11285–91.

    Article  CAS  Google Scholar 

  64. Saito S, Nobuse S, Tsuzaka E, Yuan C, Mori C, Hara M, et al. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nat Commun. 2016;7:12094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Profs. Nobuhiro Kawatsuki and Ryohei Fukae for their collaboration and discussion. This work was supported by JSPS KAKENHI Grant Numbers 18H02039 and 19K05603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuho Kondo.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, M. Photomechanical materials driven by photoisomerization or photodimerization. Polym J 52, 1027–1034 (2020). https://doi.org/10.1038/s41428-020-0367-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0367-0

This article is cited by

Search

Quick links