Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 18, 2020

A novel ionic liquid-impregnated chitosan application for separation and purification of fission 99Mo from alkaline solution

  • Tarek Monir , Ahmed Shahr El-Din , Yasser El-Nadi EMAIL logo and Amal Ali
From the journal Radiochimica Acta

Abstract

In this investigation, a novel application of Aliquat 336 (tricaprylmethylammonium chloride)-impregnated chitosan (AICS) for the separation and purification of 99Mo from some fission products, such as 137Cs, 85Sr and 131I, in alkaline solution is presented. Before impregnation, pristine chitosan experienced no adsorption affinity for Mo. However, this situation dramatically changed after the impregnation. The structure of AICS was elucidated by FTIR, SEM and EDX spectra. The influence of contact time, solution pH, weight of AICS, initial Mo concentration and temperature on the adsorption process was studied. Kinetic studies revealed that the rate of adsorption was impressively very fast and only 3 min were sufficient to reach equilibrium. The pH influence showed that Mo could be effectively adsorbed over a wide range of pH 3–11. The equilibrium data fitting to isotherms models followed the order Langmuir > Freundlich > Dubinin-Radushkevich. Based on the Langmuir model, the maximum adsorption capacity was computed at 60.1 mg/L. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Finally, a pure solution of 99Mo with a purity >99 % was obtained from a real sample. The data obtained confirmed that AICS is a promising candidate for separation and purification of 99Mo from alkaline media.

  1. Conflict of interest: None.

  2. Funding: We are very grateful for the atomic energy authority of Egypt for funding this work.

References

1. Lee, S. K., Beyer, G. J., Lee, J. S.: Development of industrial-scale fission 99Mo production process using low enriched uranium target. Nucl. Eng. Technol. 48(3), 613 (2016).10.1016/j.net.2016.04.006Search in Google Scholar

2. Naik, H., Suryanarayana, S. V., Jagadeesan, K. C., Thakare, S. V., Joshi, P. V., Nimje, V. T., Mittal, K. C., Goswami, A., Venugopal, V., Kailas, S.: An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions. J. Radioanal. Nucl. Chem. 295(1), 807 (2013).10.1007/s10967-012-1958-9Search in Google Scholar

3. Araujo, W. L., Campos, T. P.: Accelerators, spectrometers, a secular technetium-molybdenum generator. Nucl. Instrum. Methods Phys. Res. Sect. A 782, 40 (2015).10.1016/j.nima.2015.01.095Search in Google Scholar

4. Van der Marck, S. C., Koning, A. J., Charlton, K. E.: The options for the future production of the medical isotope 99Mo. Eur. J. Nucl. Med. Mol. Imaging 37(10), 1817 (2010).10.1007/s00259-010-1500-7Search in Google Scholar

5. Ali, S. A., Ache, H. J.: Production techniques of fission molybdenum-99. Radiochim. Acta 41(2–3), 65 (1987).10.1524/ract.1987.41.23.65Search in Google Scholar

6. Imam, D. M., El-Nadi, Y. A.: Recovery of molybdenum from alkaline leach solution of spent hydrotreating catalyst by solvent extraction using methyl tricaprylammonium hydroxide. Hydrometallurgy 180, 172 (2018).10.1016/j.hydromet.2018.07.022Search in Google Scholar

7. Qazi, Q. M., Ahmad, M.: Preparation and evaluation of hydrous titanium oxide as a high affinity adsorbent for molybdenum (99Mo) and its potential for use in 99mTc generators. Radiochim. Acta 99(4), 231 (2011).10.1524/ract.2011.1817Search in Google Scholar

8. Yamaura, M., Damasceno, M. O., Freitas, A. A., Camilo, R. L., Araujo, I. C., Forbicini, C. D. O.: Molybdenum adsorption by alumina and Dowex 1x8 resin for the separation and purification process of fission 99Mo. International Nuclear Atlantic Conference – INAC 2011 Belo Horizonte, MG, Brazil, October 24–28 (2011).Search in Google Scholar

9. Mushtaq, A., Iqbal, M., Muhammad, A. Management of radioactive waste from molybdenum-99 production using low enriched uranium foil target and modified CINTICHEM process. J. Radioanal. Nucl. Chem. 281(3), 379 (2009).10.1007/s10967-009-0009-7Search in Google Scholar

10. Lewis, R. E.: Production of high specific activity molybdenum-99 for preparation of technetium-99m generators. Int. J. Appl. Radiat. Isot. 22(10), 603 (1971).10.1016/0020-708X(71)90027-5Search in Google Scholar

11. Nair, A. G. C., Das, S. K., Deshmukh, S. M., Prakash, S.: Carrier free separation of 99Mo from 233U fission products. Radiochim. Acta, 57(1), 29 (1992).10.1524/ract.1992.57.1.29Search in Google Scholar

12. Rao, A., Sharma, A. K., Kumar, P., Charyulu, M. M., Tomar, B. S., Ramakumar, K. L.: Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy. Int. J. Appl. Radiat. Isot. 89, 186 (2014).10.1016/j.apradiso.2014.02.013Search in Google Scholar PubMed

13. Mareš, K. V., Daňo, M., Šebesta, F., John, J.: Recycling of isotopically modified molybdenum from irradiated CerMet nuclear fuel: part 4 – technetium separation from concentrated molybdate solution. J. Radioanal. Nucl. Chem. 321, 775 (2019).10.1007/s10967-019-06622-6Search in Google Scholar

14. Pereira, F. A., Sousa, K. S., Cavalcanti, G. R., França, D. B., Queiroga, L. N., Santos, I. M. G., Fonseca, M. G., Jaber, M.: Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. J. Environ. Chem. Eng. 5(4), 3309 (2017).10.1016/j.jece.2017.06.032Search in Google Scholar

15. Rangabhashiyam, S., Balasubramanian, P.: Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresour. Technol. Rep. 5, 261 (2019).10.1016/j.biteb.2018.07.009Search in Google Scholar

16. Khalifa, E. B., Rzig, B., Chakroun, R., Nouagui, H., Hamrouni, B.: Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemom. Intell. Lab. Syst. 189, 18 (2019).10.1016/j.chemolab.2019.03.014Search in Google Scholar

17. Wang, J., Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129 (2014).10.1016/j.biortech.2013.12.110Search in Google Scholar PubMed

18. Shahr El-Din, A. M., Monir, T., Sayed, M. A.: Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ. Sci. Pollut. Res. 26(25), 25550 (2019).10.1007/s11356-019-05851-2Search in Google Scholar PubMed

19. Yang, X., Li, Y., Gao, H., Wang, C., Zhang, X., Zhou, H.: One-step fabrication of chitosan-Fe(OH)3 beads for efficient adsorption of anionic dyes. Int. J. Biol. Macromol. 117, 30 (2018).10.1016/j.ijbiomac.2018.05.137Search in Google Scholar PubMed

20. Wang, J., Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129 (2014).10.1016/j.biortech.2013.12.110Search in Google Scholar

21. Guibal, E., Milot, C., Roussy, J.: Influence of hydrolysis mechanisms on molybdate sorption isotherms using chitosan. Sep. Sci. Technol. 35(7), 1021 (2000).10.1081/SS-100100208Search in Google Scholar

22. Brion-Roby, R., Gagnon, J., Nosrati, S., Deschenes, J. S., Chabot, B.: Adsorption and desorption of molybdenum(VI) in contaminated water using a chitosan sorbent. J. Water Process Eng. 23, 13 (2018).10.1016/j.jwpe.2018.02.016Search in Google Scholar

23. Ranjbari, S., Tanhaei, B., Ayati, A., Sillanpää, M.: Novel Aliquat-336 impregnated chitosan beads for the adsorptive removal of anionic azo dyes. Int. J. Biol. Macromol. 125, 989 (2019).10.1016/j.ijbiomac.2018.12.139Search in Google Scholar

24. Guibal, E., Milot, C., Tobin, J. M.: Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind. Eng. Chem. Res. 37(4), 1454 (1998).10.1021/ie9703954Search in Google Scholar

25. Guibal, E., Milot, C., Eterradossi, O., Gauffier, C., Domard, A.: Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. Int. J. Biol. Macromol. 24(1), 49 (1999).10.1016/S0141-8130(98)00067-1Search in Google Scholar

26. Shekhawat, A., Kahu, S., Saravanan, D., Jugade, R.: Synergistic behaviour of ionic liquid impregnated sulphate-crosslinked chitosan towards adsorption of Cr(VI). Int. J. Biol. Macromol. 80, 615 (2015).10.1016/j.ijbiomac.2015.07.035Search in Google Scholar PubMed

27. Hamed, M. M., Shahr El-Din, A. M., Abdel-Galil, E. A.: Nanocomposite of polyaniline functionalized Tafla: synthesis, characterization, and application as a novel sorbent for selective removal of Fe(III). J. Radioanal. Nucl. Chem. 322(2), 663 (2019).10.1007/s10967-019-06733-0Search in Google Scholar

28. Cui, H., Chen, J., Yang, H., Wang, W., Liu, Y., Zou, D., Liu, W., Men, G.: Preparation and application of Aliquat 336 functionalized chitosan adsorbent for the removal of Pb(II). Chem. Eng. J. 232, 372 (2013).10.1016/j.cej.2013.07.120Search in Google Scholar

29. Elanchezhiyan, S. S., Meenakshi, S.: Synthesis and characterization of chitosan/Mg-Al layered double hydroxide composites for the removal of oil particles from oil in water emulsion. Int. J. Biol. Macromol. 104, 1586 (2017).10.1016/j.ijbiomac.2017.01.095Search in Google Scholar PubMed

30. Tanhaei, B., Ayati, A., Lahtinen, M., Sillanpää, M.: Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chem. Eng. J. 259, 1 (2015).10.1016/j.cej.2014.07.109Search in Google Scholar

31. Kumar, A. S. K., Gupta, T., Kakan, S. S., Kalidhasan, S., Rajesh, V., Rajesh, N.: Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. J. Hazard. Mater. 239, 213 (2012).10.1016/j.jhazmat.2012.08.065Search in Google Scholar PubMed

32. Lagergren, S.: Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1 (1898).Search in Google Scholar

33. Ho, Y. S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451 (1999).10.1016/S0032-9592(98)00112-5Search in Google Scholar

34. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361 (1918).10.1021/ja02242a004Search in Google Scholar

35. Freundlich, H. M. F.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100 (1906).Search in Google Scholar

36. Dubinin, M. M., Radushkevich, L. V.: Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR 55, 331 (1947).Search in Google Scholar

37. Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., Anastopoulos, I.: A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425 (2019).10.1016/j.molliq.2018.10.048Search in Google Scholar

38. Liu, Y.: Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 54(7), 1981 (2009).10.1021/je800661qSearch in Google Scholar

39. Afkhami, A., Norooz-Asl, R.: Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloid Surface A 346(1–3), 52 (2009).10.1016/j.colsurfa.2009.05.024Search in Google Scholar

40. Namasivayam, C., Sangeetha, D.: Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresource Technol. 97(10), 1194 (2006).10.1016/j.biortech.2005.05.008Search in Google Scholar PubMed

41. Ogata, F., Nakamura, T., Kawasaki, N.: Adsorption capability of virgin and calcined wheat bran for molybdenum present in aqueous solution and elucidating the adsorption mechanism by adsorption isotherms, kinetics, and regeneration. J. Environ. Chem. Eng. 6(4), 4459 (2018).10.1016/j.jece.2018.06.047Search in Google Scholar

42. El-Moselhy, M. M., Sengupta, A. K., Smith, R.: Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater. J. Hazard. Mater. 185(1), 442 (2011).10.1016/j.jhazmat.2010.09.052Search in Google Scholar PubMed

43. Tu, Y. J., Chan, T. S., Tu, H. W., Wang, S. L., You, C. F., Chang, C. K.: Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles. Chemosphere 148, 452 (2016).10.1016/j.chemosphere.2016.01.054Search in Google Scholar PubMed

44. Namasivayam, C., Prathap, K.: Uptake of molybdate by adsorption onto industrial solid waste Fe(III)/Cr(III) hydroxide: kinetic and equilibrium studies. Environ. Technol. 27(8), 923 (2006).10.1080/09593332708618705Search in Google Scholar PubMed

45. Metwally, S. S., Attallah, M. F.: Impact of surface modification of chabazite on the sorption of iodine and molybdenum radioisotopes from liquid phase. J. Mol. Liq. 290, Article 111237 (2019).10.1016/j.molliq.2019.111237Search in Google Scholar

Received: 2019-08-16
Accepted: 2020-01-07
Published Online: 2020-02-18
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3202/html
Scroll to top button