Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 7, 2020

Inverse problems for a conformable fractional Sturm–Liouville operator

  • İbrahi̇m Adalar ORCID logo EMAIL logo and Ahmet Sinan Ozkan ORCID logo

Abstract

In this paper, a Sturm–Liouville boundary value problem which includes conformable fractional derivatives of order α, 0<α1 is considered. We give some uniqueness theorems for the solutions of inverse problems according to the Weyl function, two given spectra and classical spectral data. We also study the half-inverse problem and prove a Hochstadt–Lieberman-type theorem.

Acknowledgements

The authors thanks the reviewers for constructive comments and recommendations which helped to improve the readability and quality of the paper.

References

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66. 10.1016/j.cam.2014.10.016Search in Google Scholar

[2] M. A. Al-Towailb, A q-fractional approach to the regular Sturm–Liouville problems, Electron. J. Differential Equations 2017 (2017), Paper No. 88. Search in Google Scholar

[3] B. P. Allahverdiev, H. Tuna and Y. Yalçinkaya, Conformable fractional Sturm–Liouville equation, Math. Methods Appl. Sci. 42 (2019), no. 10, 3508–3526. 10.1002/mma.5595Search in Google Scholar

[4] V. A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53 (1929), 690–695. 10.1007/BF01330827Search in Google Scholar

[5] A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative, Open Math. 13 (2015), no. 1, 889–898. 10.1515/math-2015-0081Search in Google Scholar

[6] D. Baleanu, Z. B. Güvenç and J. A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, 2010. 10.1007/978-90-481-3293-5Search in Google Scholar

[7] G. Borg, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96. 10.1007/BF02421600Search in Google Scholar

[8] K. Chadan, D. Colton, L. Päivärinta and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems. With a Foreword by Margaret Cheney, SIAM Monogr. Math. Model. Comput., Society for Industrial and Applied Mathematics, Philadelphia, 1997. 10.1137/1.9780898719710Search in Google Scholar

[9] I. Dehghani Tazehkand and A. Jodayree Akbarfam, On inverse Sturm–Liouville problems with spectral parameter linearly contained in the boundary conditions, ISRN Math. Anal. 2011 (2011), Article ID 754718. 10.5402/2011/754718Search in Google Scholar

[10] G. Freiling and V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Science Publishers, Huntington, 2001. Search in Google Scholar

[11] I. M. Gel’fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl. (2) 1 (1955), 253–304. 10.1007/978-3-642-61705-8_24Search in Google Scholar

[12] F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2765–2787. 10.1090/S0002-9947-99-02544-1Search in Google Scholar

[13] O. H. Hald, The inverse Sturm–Liouville problem with symmetric potentials, Acta Math. 141 (1978), no. 3–4, 263–291. 10.1007/BF02545749Search in Google Scholar

[14] O. H. Hald, Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37 (1984), no. 5, 539–577. 10.1002/cpa.3160370502Search in Google Scholar

[15] O. H. Hald and J. R. McLaughlin, Solutions of inverse nodal problems, Inverse Problems 5 (1989), no. 3, 307–347. 10.1088/0266-5611/5/3/008Search in Google Scholar

[16] H. Hochstadt and B. Lieberman, An inverse Sturm–Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978), no. 4, 676–680. 10.1137/0134054Search in Google Scholar

[17] M. Horváth, Inverse spectral problems and closed exponential systems, Ann. of Math. (2) 162 (2005), no. 2, 885–918. 10.4007/annals.2005.162.885Search in Google Scholar

[18] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70. 10.1016/j.cam.2014.01.002Search in Google Scholar

[19] H. Khosravian-Arab, M. Dehghan and M. R. Eslahchi, Fractional Sturm–Liouville boundary value problems in unbounded domains: Theory and applications, J. Comput. Phys. 299 (2015), 526–560. 10.1016/j.jcp.2015.06.030Search in Google Scholar

[20] M. Klimek and O. P. Agrawal, Fractional Sturm–Liouville problem, Comput. Math. Appl. 66 (2013), no. 5, 795–812. 10.1016/j.camwa.2012.12.011Search in Google Scholar

[21] N. Levinson, The inverse Sturm–Liouville problem, Mat. Tidsskr. B 1949 (1949), 25–30. Search in Google Scholar

[22] B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Math. Appl. (Sov. Ser.) 59, Kluwer Academic Publishers Group, Dordrecht, 1991. 10.1007/978-94-011-3748-5Search in Google Scholar

[23] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College Press, London, 2010. 10.1142/p614Search in Google Scholar

[24] V. A. Marčenko, Concerning the theory of a differential operator of the second order, Doklady Akad. Nauk SSSR. (N.S.) 72 (1950), 457–460. Search in Google Scholar

[25] V. A. Marčenko, Some questions of the theory of one-dimensional linear differential operators of the second order. I (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 327–420; translation in Amer. Math. Soc. Transl. (2) 101 (1973), 1–104. 10.1090/trans2/101/01Search in Google Scholar

[26] K. S. Miller, Fractional differential equations, J. Fract. Calc. 3 (1993), 49–57. Search in Google Scholar

[27] K. Mochizuki and I. Trooshin, Inverse problem for interior spectral data of the Sturm–Liouville operator, J. Inverse Ill-Posed Probl. 9 (2001), no. 4, 425–433. 10.1515/jiip.2001.9.4.425Search in Google Scholar

[28] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue and V. Feliu, Fractional-Order Systems and Controls. Fundamentals and Applications, Adv. Indust. Control, Springer, London, 2010. 10.1007/978-1-84996-335-0Search in Google Scholar

[29] H. Mortazaasl and A. Jodayree Akbarfam, Trace formula and inverse nodal problem for a conformable fractional Sturm–Liouville problem, Inverse Probl. Sci. Eng. 28 (2020), no. 4, 524–555. 10.1080/17415977.2019.1615909Search in Google Scholar

[30] K. B. Oldham and J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, With an Annotated Chronological Bibliography by Bertram Ross, Academic Press, New York, 1974. Search in Google Scholar

[31] A. S. Ozkan, Inverse Sturm–Liouville problems with eigenvalue-dependent boundary and discontinuity conditions, Inverse Probl. Sci. Eng. 20 (2012), no. 6, 857–868. 10.1080/17415977.2012.658519Search in Google Scholar

[32] A. Pálfalvi, Efficient solution of a vibration equation involving fractional derivatives, Int. J. Nonlin. Mech. 45 (2010), 169–175. 10.1016/j.ijnonlinmec.2009.10.006Search in Google Scholar

[33] M. Rivero, J. J. Trujillo and M. P. Velasco, A fractional approach to the Sturm–Liouville problem, Centr. Eur. J. Phys. 11 (2013), no. 10, 1246–1254. 10.2478/s11534-013-0216-2Search in Google Scholar

[34] C.-T. Shieh and V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347 (2008), no. 1, 266–272. 10.1016/j.jmaa.2008.05.097Search in Google Scholar

[35] M. F. Silva and J. A. Tenreiro Machado, Fractional order PDα joint control of legged robots, J. Vib. Control 12 (2006), no. 12, 1483–1501. 10.1177/1077546306070608Search in Google Scholar

[36] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002. 10.1515/9783110940961Search in Google Scholar

Received: 2019-08-29
Revised: 2020-03-10
Accepted: 2020-03-14
Published Online: 2020-06-07
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jiip-2019-0058/html
Scroll to top button