Skip to main content
Log in

Development of a Confined Circular-Cum-Parallel Ribbon Flare and Associated Pre-Flare Activity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study a complex GOES M1.1 circular ribbon flare and related pre-flare activity on 26 January 2015 [SOL2015-01-26T16:53] in the solar active region NOAA 12268. This flare activity was observed by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The examination of photospheric magnetograms during the extended period, prior to the event, suggests the successive development of a so-called “anemone” type magnetic configuration. The Nonlinear Force Free Field (NLFFF) extrapolation reveals a fan-spine magnetic configuration with the presence of a coronal null-point. We found that the pre-flare activity in the active region starts ≈15 min prior to the main flare in the form of localized bright patches at two locations. A comparison of locations and spatial structures of the pre-flare activity with magnetic configuration of the corresponding region suggests onset of magnetic reconnection at the null-point along with the low-atmosphere magnetic reconnection caused by the emergence and the cancellation of the magnetic flux. The main flare of M1.1 class is characterized by the formation of a well-developed circular ribbon along with a region of remote brightening. Remarkably, a set of relatively compact parallel ribbons formed inside the periphery of the circular ribbon which developed lateral to the brightest part of the circular ribbon. During the peak phase of the flare, a coronal jet is observed at the north-east edge of the circular ribbon, which suggests interchange reconnection between large-scale field lines and low-lying closed field lines. Our investigation suggests a combination of two distinct processes in which ongoing pre-flare null-point reconnection gets further intensified as the confined eruption along with jet activity proceeded from within the circular ribbon region which results to the formation of inner parallel ribbons and corresponding post-reconnection arcade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Asai, A., Shibata, K., Hara, H., Nitta, N.V.: 2008, Characteristics of anemone active regions appearing in coronal holes observed with the yohkoh soft X-ray telescope. Astrophys. J.673, 1188. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys.543, A110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Awasthi, A.K., Jain, R., Gadhiya, P.D., Aschwanden, M.J., Uddin, W., Srivastava, A.K., Chandra, R., Gopalswamy, N., Nitta, N.V., Yashiro, S., Manoharan, P.K., Choudhary, D.P., Joshi, N.C., Dwivedi, V.C., Mahalakshmi, K.: 2014, Multiwavelength diagnostics of the precursor and main phases of an M1.8 flare on 2011 April 22. Mon. Not. Roy. Astron. Soc.437, 2249. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bentley, R.D., Klein, K.-L., van Driel-Gesztelyi, L., Démoulin, P., Trottet, G., Tassetto, P., Marty, G.: 2000, Magnetic activity associated with radio noise storms. Solar Phys.193, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA Spec. Publ.50, 451. ADS.

    ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys.258, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Mandrini, C.H., Démoulin, P., Pariat, E., Török, T., Uddin, W.: 2011, Homologous flares and magnetic field topology in Active Region NOAA 10501 on 20 November 2003. Solar Phys.269, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Filippov, B., Joshi, R., Schmieder, B.: 2017, Two-step filament eruption during 14 - 15 March 2015. Solar Phys.292, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dudík, J., Janvier, M., Aulanier, G., Del Zanna, G., Karlický, M., Mason, H.E., Schmieder, B.: 2014, Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA. Astrophys. J.784, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dudík, J., Polito, V., Janvier, M., Mulay, S.M., Karlický, M., Aulanier, G., Del Zanna, G., Dzifčáková, E., Mason, H.E., Schmieder, B.: 2016, Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare. Astrophys. J.823(1), 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev.159, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Green, L.M., Török, T., Vršnak, B., Manchester, W., Veronig, A.: 2018, The origin, early evolution and predictability of solar eruptions. Space Sci. Rev.214(1), 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hao, Q., Yang, K., Cheng, X., Guo, Y., Fang, C., Ding, M.D., Chen, P.F., Li, Z.: 2017, A circular white-light flare with impulsive and gradual white-light kernels. Nat. Commun.8, 2202. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, J.W., Bolding, J., Clark, R., Hauth, D., Hill, F., Kroll, R., Luis, G., Mills, N., Purdy, T., Henney, C., Holland, D., Winter, J.: 2011, Full-disk solar H-alpha images from GONG. In: AAS/Solar Physics Division Abstracts #42, Bulletin of the American Astronomical Society43, 17.45. ADS.

    Google Scholar 

  • Hernandez-Perez, A., Thalmann, J.K., Veronig, A.M., Su, Y., Gömöry, P., Dickson, E.C.: 2017, Generation mechanisms of quasi-parallel and quasi-circular flare ribbons in a confined flare. Astrophys. J.847(2), 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hernandez-Perez, A., Su, Y., Veronig, A.M., Thalmann, J., Gömöry, P., Joshi, B.: 2019, Pre-eruption processes: Heating, particle acceleration, and the formation of a hot channel before the 2012 October 20 M9.0 limb flare. Astrophys. J.874(2), 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys.34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hong, J., Jiang, Y., Yang, J., Li, H., Xu, Z.: 2017, Minifilament eruption as the source of a blowout jet, C-class flare and type-III radio burst. Astrophys. J.835, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Démoulin, P.: 2015, From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (invited review). Solar Phys.290, 3425. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, C., Feng, X.: 2013, Extrapolation of the solar coronal magnetic field from SDO/HMI magnetogram by a CESE-MHD-NLFFF code. Astrophys. J.769, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Veronig, A.M., Lee, J., Bong, S.-C., Tiwari, S.K., Cho, K.-S.: 2011, Pre-flare activity and magnetic reconnection during the evolutionary stages of energy release in a solar eruptive flare. Astrophys. J.743, 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, R., Schmieder, B., Chandra, R., Aulanier, G., Zuccarello, F.P., Uddin, W.: 2017, Slippage of jets explained by the magnetic topology of NOAA Active Region 12035. Solar Phys.292, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, S., Moon, Y.-J., Kim, K.-H., Kim, Y.-H., Sakurai, T., Chae, J., Kim, K.-S.: 2007, Two-step reconnections in a C3.3 flare and its preflare activity observed by Hinode XRT. Publ. Astron. Soc. Japan59, S831. DOI. ADS.

    Article  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys.50, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kushwaha, U., Joshi, B., Cho, K.-S., Veronig, A., Tiwari, S.K., Mathew, S.K.: 2014, Impulsive energy release and non-thermal emission in a confined M4.0 flare triggered by rapidly evolving magnetic structures. Astrophys. J.791(1), 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J.: 2014, Slipping magnetic reconnection triggering a solar eruption of a triangle-shaped flag flux rope. Astrophys. J. Lett.791(1), L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Zhang, J.: 2015, Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the solar dynamics observatory and interface region imaging spectrograph. Astrophys. J. Lett.804(1), L8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, T., Yang, S., Zhang, Q., Hou, Y., Zhang, J.: 2018, Two episodes of magnetic reconnections during a confined circular-ribbon flare. Astrophys. J.859, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys.210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Kliem, B., Titov, V.S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J.818(2), 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T.E., Title, A.M., Tarbell, T.D., Low, B.C.: 2011, Chromospheric jet and growing “loop” observed by Hinode: New evidence of fan-spine magnetic topology resulting from flux emergence. Astrophys. J.728(2), 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J.700, 559. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B.: 2019, Preflare processes, flux rope activation, large-scale eruption, and associated X-class flare from the Active Region NOAA 11875. Astrophys. J.884(1), 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B., Prasad, A.: 2020, Identification of pre-flare processes and their possible role in driving a large-scale flux rope eruption with complex M-class flare in the Active Region NOAA 12371. Solar Phys.295, 29. DOI.

    Article  ADS  Google Scholar 

  • Moon, Y.-J., Chae, J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2004, Low atmosphere reconnections associated with an eruptive solar flare. J. Korean Astron. Soc.37(1), 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakajima, H., Dennis, B.R., Hoyng, P., Nelson, G., Kosugi, T., Kai, K.: 1985, Microwave and X-ray observations of delayed brightenings at sites remote from the primary flare locations. Astrophys. J.288, 806. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J.714, 1762. DOI. ADS.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1963, The solar-flare phenomenon and the theory of reconnection and annihiliation of magnetic fields. Astrophys. J. Suppl.8, 177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pontin, D., Galsgaard, K., Démoulin, P.: 2016, Why are flare ribbons associated with the spines of magnetic null points generically elongated? Solar Phys.291(6), 1739. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Vilmer, N., Aulanier, G., Pariat, E.: 2012, X-ray and ultraviolet investigation into the magnetic connectivity of a solar flare. Astron. Astrophys.547, A52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys.275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys.8, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature211, 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Aulanier, G., Su, Y., Hannah, I.G., Hock, R.A.: 2013, Hot spine loops and the nature of a late-phase solar flare. Astrophys. J.778, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Svestka, Z.: 1986, On the varieties of solar flares. In: Neidig, D.F., Machado, M.E. (eds.) The Lower Atmosphere of Solar Flares, 332. ADS.

    Google Scholar 

  • Tang, F., Moore, R.L.: 1982, Remote flare brightenings and type-III reverse slope bursts. Solar Phys.77(1–2), 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uddin, W., Schmieder, B., Chandra, R., Srivastava, A.K., Kumar, P., Bisht, S.: 2012, Observations of multiple surges associated with magnetic activities in AR 10484 on 2003 October 25. Astrophys. J.752(1), 70. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A., Vršnak, B., Temmer, M., Hanslmeier, A.: 2002, Relative timing of solar flares observed at different wavelengths. Solar Phys.208(2), 297. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C.: 2012, Circular ribbon flares and homologous jets. Astrophys. J.760, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C., Ahn, K., Xu, Y., Jing, J., Deng, N., Huang, N., Liu, R., Kusano, K., Fleishman, G.D., Gary, D.E., Cao, W.: 2017, High-resolution observations of flare precursors in the low solar atmosphere. Nat. Astron.1, 0085. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys.516, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Solanki, S.K., Yelles, L., Lagg, A.: 2007, Nonlinear force-free magnetic field modelling for VIM on SO. In: Second Solar Orbiter Workshop, ESA Special Publication641, 19. ADS.

    Google Scholar 

  • Xu, Z., Yang, K., Guo, Y., Zhao, J., Zhao, Z.J., Kashapova, L.: 2017, Homologous circular-ribbon flares driven by twisted flux emergence. Astrophys. J.851, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zeng, Z., Chen, B., Ji, H., Goode, P.R., Cao, W.: 2016, Resolving the fan-spine reconnection geometry of a small-scale chromospheric jet event with the new solar telescope. Astrophys. J.819(1), L3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Li, D., Huang, Y.: 2018, Imaging observations of chromospheric evaporation in a circular-ribbon flare. arXiv e-prints. ADS.

  • Zheng, R., Chen, Y., Wang, B.: 2016, Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare. Astrophys. J.823(2), 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhong, Z., Guo, Y., Ding, M.D., Fang, C., Hao, Q.: 2019, Transition from circular-ribbon to parallel-ribbon flares associated with a bifurcated magnetic flux rope. Astrophys. J.871, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Chandra, R., Schmieder, B., Aulanier, G., Joshi, R.: 2017, Transition from eruptive to confined flares in the same active region. Astron. Astrophys.601, A26. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for valuable comments and suggestions. SDO is a mission for NASA’s Living With a Star (LWS) Program. SDO data are courtesy of the NASA/SDO and HMI science team. RHESSI is a NASA Small Explorer Mission. GOES is a joint effort of NASA and the National Oceanic and Atmospheric Administration (NOAA). PD, RC and BJ acknowledges the support from the DST/SERB project. PD also anknowledges the support from the CSIR, New Delhi. This work is supported by the Indo-Austrian joint research project no. INT/AUSTRIA/BMWF/ P-05/2017 and OeAD project no. IN 03/2017. A.M.V. acknowledges the Austrian Science Fund (FWF): P25383-N27. RJ thanks to the Department of Science and Technology (DST), New Delhi, India for an INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Devi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 12.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Joshi, B., Chandra, R. et al. Development of a Confined Circular-Cum-Parallel Ribbon Flare and Associated Pre-Flare Activity. Sol Phys 295, 75 (2020). https://doi.org/10.1007/s11207-020-01642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01642-y

Keywords

Navigation