Skip to main content
Log in

Study of Design Tunable Optical Sensor and Monochromatic Filter of the One-Dimensional Periodic Structure of TiO2/MgF2 with Defect Layer of Liquid Crystal (LC) Sandwiched with Two Silver Layers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we have inspected the optical characteristics of one-dimensional periodic structure (1DPS) of TiO2 and MgF2 dielectric materials with defect layer of liquid crystal (LC) sandwiched with two silver layers, i.e., (TiO2|MgF2)3|Ag|LC|Ag|(TiO2/MgF2)3 using transfer matrix method (TMM). The optical tunable properties of considered periodic structures investigated at different incident angles and temperatures for TE and TM modes. Our study shows that absorption peak of 1DPS varies with incident angle and temperature. The defect layer (Ag-LC-Ag), sandwiched LC within two metallic (Ag) layers, exhibits the surface plasmon waves at the metal LC interfaces. The effect of surface plasmon waves can be better understand through the optical sensing property of such defect periodic structure. The detailed study concludes that such a type of one-dimensional periodic structure (1DPS) may be useful to design a tunable sensor and monochromatic filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Lett 58:2059–2062

    CAS  Google Scholar 

  2. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489

    CAS  Google Scholar 

  3. JonopoulosJD VP, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143–149

    Google Scholar 

  4. Zheng QR, Fu YQ, Yuan NC (2006) Characteristics of planer PBG structures with a cover layer. J Electromag Waves and Applications 20:1439–1453

    Google Scholar 

  5. Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL (1998) A dielectric omnidirectional reflector. Science 282:1679–1682

    CAS  Google Scholar 

  6. Rojas JAM, Alpuente J, Pineiro J, Sanchez R (2006) Rigorous full vectorial analysis of electromagnetic wave propagation in 1D. Prog Electromagn Res 63:89–105

    Google Scholar 

  7. Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton Univ, Press, Princeton, NJ

    Google Scholar 

  8. Srivastava R, Thapa KB, Pati S, Ojha SP (2008) Omni-direction reflection in one dimensional photonic crystal. Progress In Electromagnetics Research B 7:133–143

    Google Scholar 

  9. Thapa KB, Srivastava S, Tiwari S (2010) Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals. J Supercond Novel Magn 23:517–525

    CAS  Google Scholar 

  10. Thapa KB, Singh SK, Ojha SP (2006) Omnidirectional high reflector for infrared frequency. Int J Infrared Milli Waves 27:1257–1268

    CAS  Google Scholar 

  11. Pandey GN, Thapa KB, Ojha SP (2013) Omni-directional reflection bands in one-dimensional plasma dielectric photonic crystals. Optik 124:3396–3401

    CAS  Google Scholar 

  12. Smith DR, McCall SL, Platzman PM, Dalichaouch R, Kroll N, Schultz S (1993) Photonic band structure and defects in one and two dimensions. J Opt Soc Am B 10:314–321

    CAS  Google Scholar 

  13. Jiang XY, Yu DX, Chun WS (2007) Effects of negative index medium defect layers on the transmission properties of one dimensional photonic crystal. Optoelectron Lett 3:144–147

    Google Scholar 

  14. Inouye H, Arakawa M, Ye JY, Hattori T, Nakatsuka H, Hirao K (2002) Optical properties of a total-reflection-type one dimensional photonic crystal. IEEE J Quantum Electron 38:867–871

    CAS  Google Scholar 

  15. Schuller C, Klopf F, Reithmaier JP, Kamp M, Forchel A (2003) Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals. Appl Phys Lett 82:2767–2769

    CAS  Google Scholar 

  16. Leonard SW, Mondia JP, vanDriel HM, Toader O, John S, Busch K, Birner A, Gosele U, Lehmann V (2000) Tunable two dimensional photonic crystals using liquid crystal infiltration. Phys Rev B 61:R2389–R2392

    CAS  Google Scholar 

  17. Jia W, Li Y, Xi Y, Jiang P, Xu X, Liu X, Fu R, Zi J (2003) Tunability of photonic crystals based on the Faraday effect. J Phys Condens Matter 15:6731–6737

    CAS  Google Scholar 

  18. Liu CC, Wu CJ (2014) Analysis of defect mode in a dielectric photonic crystal containing ITO defect. Optik 125:7140–7142

    CAS  Google Scholar 

  19. Wu MR, Wu CJ, Chang SJ (2014) Investigation of defect modes in a defective photonic crystal with a semiconductor metamaterial defect. Phys E 64:146–151

    CAS  Google Scholar 

  20. Ha YK, Yang YC, Kim JE, Park HY, Kee CS, Lim H, Lee JC (2001) Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl Phys Lett 79:15–17

    CAS  Google Scholar 

  21. Panoiu NC, Bahl M, Osgood RM (2004) All-optical tunability of a nonlinear photonic crystal channel drop filters. Opt Express 12:1605–1610

    Google Scholar 

  22. Dadoenkova NN, Zabolotin AE, Lyubchanskii IL, Lee YP, Rasing T (2010) One-dimensional photonic crystal with a complex defect containing an ultrathin superconducting sublayer. J Appl Phys 108:093117

    Google Scholar 

  23. Park D, Kim S, Park I, Lim H (2005) Higher order optical resonant filters based on coupled defect resonators in photonic crystals. J Lightwave Technol 23:1923–1928

    Google Scholar 

  24. Lin PT, Wessele BW (2009) Ferroelectric thin film photonic crystal waveguide and its electro-optic properties. J OptA 11:075005

    Google Scholar 

  25. Zhu Q, Zhang Y (2009) Defect modes and wavelength tuning of one dimensional photonic crystal with lithium niobate. Optik 120:195–198

    CAS  Google Scholar 

  26. Ozaki R, Matsui T, Ozaki M, Yashino K (2003) Electrically colortunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Appl Phys Lett 82:3593–3595

    CAS  Google Scholar 

  27. Nemec H, Kuzel P, Duvillaret L, Pashkin A, Dressel M, Sebastian MT (2005) Highly tunable photonic crystal filter for the terahertz range. Opt Lett 30:549–551

    CAS  Google Scholar 

  28. Yu G, Reisman L, Celinski Z, Camley RE, Glushchenko A (2011) Metallic surfaces as alignment layers for nondisplay applications of liquid crystals. Appl Phys Lett 98:073301

    Google Scholar 

  29. Gorkunov MV, Kasyanova IV, Artemov VV, Barnik MI, Geivandov AR, Palto SP (2017) Fast surface-plasmon-mediated electro-optics of a liquid crystal on a metal grating. Phys Rev Appl 8:054051

    Google Scholar 

  30. Xie ZW, Yang JH, Vashistha V, Lee W, Chen KP (2017) Liquid-crystal tunable color filters based on aluminum metasurfaces. Opt Express 25:30764–30770

    CAS  Google Scholar 

  31. Pyatnov MV, Vetrov SY, Timofeev IV (2017) Localised optical states in a structure formed by two oppositely handed cholesteric liquid crystal layers and a metal. Liquid Crystals 44:674–678

    CAS  Google Scholar 

  32. Zografopoulos DC, Beccherelli R (2015) Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching. Sci Rep 5:13137

    CAS  Google Scholar 

  33. Cheng HC, Kuo CY, Hung YJ, Chen KP, Jeng SC (2018) Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl 9:064034

    CAS  Google Scholar 

  34. Isić G, Vuković S, Jakšić Z, Belić M (2018) Tamm plasmon modes on semi-infinite metallodielectric superlattices. Sci Rep 8:4418

    Google Scholar 

  35. Manikandan P, Manikandan D, Manikandan E, Ferdinand AC (2014) Surface enhanced Raman scattering (SERS) of silver ions embedded nano-composite glass. Spectrochim Acta A Mol Biomol Spectrosc 124:203–207

    CAS  Google Scholar 

  36. Manikandan P, Manikandan D, Manikandan E, Ferdinand AC (2014) Structural, optical and micro-Raman scattering studies of nanosized copper ion (Cu+) exchanged soda lime glasses. Plasmonics 9:637–643

    CAS  Google Scholar 

  37. Satpathy G, Chandra GK, Manikandan E, Mahapatra DR, Umapathy S (2020) Pathogenic Escherichia coli (E. coli) detection through tuned nanoparticles enhanced study. Biotechnol Lett 42:853–863

    CAS  Google Scholar 

  38. Manikandan D, Mohan S, Nair KGM (2003) Photoluminescence of embedded copper nanoclusters in soda-lime glass. Mater Lett 57:1391–1394

    CAS  Google Scholar 

  39. Manikandan D, Mohan S, Magudapathy P, Nair KGM (2003) Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optial absorption study. Phys B Condens Matter 325:86–91

    CAS  Google Scholar 

  40. Yeh P (1979) Electromagnetic propagation in birefringent layered media. J Opt Soc Am 69:742–756

    Google Scholar 

  41. Yariv A, Yeh P(1983) Optical waves in crystals propagation and control of laser radiation, Wiley

  42. Li J, Gauzia S, Wu ST (2004) High temperature-gradient refractive index liquid crystals. Opt Exp 12:2002–2010

    CAS  Google Scholar 

  43. Li J, Wu ST, Brugioni S, Meucci R, Faetti S (2005) Infrared refractive indices of liquid crystals. J Appl. Phys 97:073501

    Google Scholar 

Download references

Funding

Author PS received NON-NET UGC fellowship from the Babasaheb Bhimrao Ambedkar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khem B. Thapa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Thapa, K.B., Singh, S.K. et al. Study of Design Tunable Optical Sensor and Monochromatic Filter of the One-Dimensional Periodic Structure of TiO2/MgF2 with Defect Layer of Liquid Crystal (LC) Sandwiched with Two Silver Layers. Plasmonics 15, 1845–1854 (2020). https://doi.org/10.1007/s11468-020-01210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01210-x

Keywords

Navigation