Skip to main content
Log in

The complete chloroplast genome and characteristics analysis of Callistemon rigidus R.Br.

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Callistemon rigidus R.Br. one of the traditional Chinese medicinal plants, is acrid-flavored and mild-natured, with the prominent effects reducing swelling, resolving phlegm, and dispelling rheumatism. Clinically, it has been commonly used to treat cold, cough and asthma, pain and swelling from impact injuries, eczema, rheumatic arthralgia. The chloroplast genome study on Callistemon rigidus R.Br. is a few seen. This study demonstrates the data collected from the assembly and annotation of the chloroplast (cp) genome of Callistemon rigidus R.Br., followed by furthers comparative analysis with the cp genomes of closely related species. C. rigidus R.Br. showed a cp genome in the size of 158, 961 bp long with 36.78% GC content, among which a pair of inverted repeats (IRs) of 26, 671 bp separated a large single-copy (LSC) region of 87, 162 bp and a small single-copy (SSC) region of 18, 457 bp. Altogether 131 genes were hosted, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. 284 simple sequence repeats (SSRs) were also marked out. A comparative analysis of the genome structure and the sequence data of closely related species unveiled the conserved gene order in the IR and LSC/SSC regions, a quite constructive finding for future phylogenetic research. Overall, this study providing C. rigidus R.Br. genomic resources could positively contribute to the evolutionary study and the phylogenetic reconstruction of Myrtaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dongliang L (1989) Preliminary report on the introduction and cultivation of Callistemon rigidus. R.Br. Guangdong Garden 4:41–43

    Google Scholar 

  2. Yaoen Z (1993) On the cultivation and seedling transplanting of Callistemon rigidus. Chinese Garden 9:37–62

    Google Scholar 

  3. Liu HX, Chen YC, Liu Y, Zhang WM, Wu JW, Tan HB, Qiu SX (2016) Acylphloroglucinols from the leaves of Callistemon viminalis. Fitoterapia 114:40–44

    CAS  PubMed  Google Scholar 

  4. Park SY, Lim JY, Jeong W, Hong SS, Yang YT, Hwang BY, Lee D (2010) C-methylflavonoids isolated from Callistemon lanceolatus protect PC12 cells against Abeta-induced toxicity. Planta Med 76:863–868

    CAS  PubMed  Google Scholar 

  5. Rattanaburi S, Mahabusarakam W, Phongpaichit S, Carroll AR (2013) Acylphloroglucinols from Callistemon lanceolatus DC. Tetrahedron 69:6070–6075

    CAS  Google Scholar 

  6. Varma RS, Parthasarathy MR (1975) Triterpenoids of Callistemon lanceolatus leaves. Phytochemistry 14:1675–1676

    CAS  Google Scholar 

  7. Wu L, Luo J, Zhang Y, Zhu M, Wang X, Luo J, Yang M, Yu B, Yao H, Dai Y, Guo Q, Chen Y, Sun H, Kong L (2015) Isolation and biomimetic synthesis of (±)-calliviminones A and B, two novel Diels-Alder adducts, from Callistemon viminalis. Tetrahedron Lett 56:229–232

    CAS  Google Scholar 

  8. Xu Jie Qin HL, Qian Yu, Yan H et al (2017) Acylphloroglucinol derivatives from the twigs and leaves of Callistemon salignus. Tetrahedron 73:1803–1811

    Google Scholar 

  9. Liu B, Dong X, Lin X, Jianguang MO, Zhang Y, Xu SU (2010) Chemical components of the essential oil from Callistemon rigidus R.Br. J Tsinghua Univ 50:1437–1439

    CAS  Google Scholar 

  10. Zhongyun L (2010) Study on the chemical constitents of volatile oil of leaves from Callistemon salignus DC. Guangdong For Sci Technol 26:59–61

    Google Scholar 

  11. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    CAS  PubMed  Google Scholar 

  12. Kress W, Wurdack K, Zimmer E, Weigt L, Janzen D (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    CAS  PubMed  Google Scholar 

  13. Ng PK, Lin SM, Lim PE, Liu LC, Chen CM, Pai TW (2017) Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae. BMC Genomics 18:40

    PubMed  PubMed Central  Google Scholar 

  14. Zeng S, Zhou T, Han K, Yang Y, Zhao J, Liu Z-L (2017) The complete chloroplast genome sequences of six rehmannia species. Genes 8:103

    PubMed Central  Google Scholar 

  15. Zhao J, Xu Y, Xi L, Yang J, Chen H, Zhang J (2018) Characterization of the chloroplast genome sequence of Acer miaotaiense: comparative and phylogenetic analyses. Molecules 23:1740

    PubMed Central  Google Scholar 

  16. Doyle J, Doyle J (1986) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19

  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole-genome data. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw955

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang L, Linchun S, Yingjie Z, Haimei C (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. https://doi.org/10.1186/1471-2164-13-715

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics (Oxford, England) 20:3252–3255

    CAS  Google Scholar 

  21. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:475

    Google Scholar 

  22. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S (2003) Glocal alignment: finding rearrangements during alignment. Bioinformatics (Oxford, England) 19(Suppl 1):i54–62

    Google Scholar 

  24. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273–279

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  Google Scholar 

  26. Hall T (1999) BioEdit: a user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  27. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics, and parallel computing. Nat Methods 9:772–775

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  29. Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts–Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol 69:704–716

    CAS  PubMed  Google Scholar 

  30. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    CAS  PubMed  Google Scholar 

  31. Saina JK, Gichira AW, Li Z-Z, Hu G-W, Wang Q-F, Liao K (2018) The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica 146:101–113

    CAS  PubMed  Google Scholar 

  32. Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220

    CAS  PubMed  Google Scholar 

  33. Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts—Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol 69:704–716

    CAS  PubMed  Google Scholar 

  34. Huang Y-Y, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE. https://doi.org/10.1371/journal.pone.0074736

    Article  PubMed  PubMed Central  Google Scholar 

  35. Machado LdO, Vieira LdN, Stefenon VM, Oliveira Pedrosa Fd, Souza EMd, Guerra MP, Nodari RO (2017) Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences. Genetica 145:163–174

    PubMed  Google Scholar 

  36. Zhang XF, Wang JH, Wang HX, Zhao KK, Zhu ZX, Wang HF (2019) Complete plastome sequence of Syzygium forrestii Merr. et Perry (Myrtaceae): an endemic species in China. Mitochondr DNA B 4:126–127

    Google Scholar 

  37. Huang Y, Yang Z, Huang S, An W, Li J, Zheng X (2019) Comprehensive analysis of Rhodomyrtus tomentosa chloroplast genome. Plants 8:89–103

    CAS  PubMed Central  Google Scholar 

  38. Petersen K, Schöttler M, Karcher D, Thiele W, Bock R (2011) Elimination of a group II intron from a plastid gene causes a mutant phenotype. Nucleic Acids Res 39:5181–5192

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V (2017) Chloroplast genome analysis of resurrection tertiary relict haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci 8:204

    PubMed  PubMed Central  Google Scholar 

  40. Jeon JH, Kim SC (2019) Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes (Basel) 10:23

    Google Scholar 

  41. Kaur S, Panesar PS, Bera MB, Kaur V (2015) Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. Crit Rev Food Sci Nutr 55:41–49

    CAS  PubMed  Google Scholar 

  42. Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G (2016) Comparative analysis of the complete chloroplast genomes of five quercus species. Front Plant Sci 7:959

    PubMed  PubMed Central  Google Scholar 

  43. Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J, Chen S (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules (Basel, Switzerland) 22:1330

    Google Scholar 

  44. Xie DF, Yu Y, Deng YQ, Li J, Liu HY, Zhou SD, He XJ (2018) Comparative analysis of the chloroplast genomes of the chinese endemic genus urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int J Mol Sci 19:1–20

    Google Scholar 

  45. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform 8:77–80

    CAS  Google Scholar 

  46. Niu Z, Xue Q, Zhu S, Sun J, Liu W, Ding X (2017) The complete plastome sequences of four orchid species: insights into the evolution of the orchidaceae and the utility of plastomic mutational hotspots. Front Plant Sci 8:715–726

    PubMed  PubMed Central  Google Scholar 

  47. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    CAS  PubMed  Google Scholar 

  48. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignments of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Doose D, Grand C, Lesire C (2017) MAUVE runtime: a component-based middleware to reconfigure software architectures in real-time

  50. Gu C, Tembrock LR, Johnson NG, Simmons MP, Wu Z (2016) The complete plastid genome of Lagerstroemia fauriei and loss of rpl2 intron from lagerstroemia (Lythraceae). PLoS ONE 11:e0150752

    PubMed  PubMed Central  Google Scholar 

  51. Costa FJ, Lin S-M, Macaya EC, Fernández-García C, Verbruggen H (2016) Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales. BMC Evol Biol 16:205–218

    Google Scholar 

  52. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    CAS  PubMed  Google Scholar 

  53. Xu C, Dong W, Li W, Lu Y, Xie X, Jin X, Shi J, He K, Suo Z (2017) Comparative analysis of six lagerstroemia complete chloroplast genomes. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all researchers that read and helped us to perform this project.

Funding

The study was supported by the start-up foundation of introducing talents for scientific research, Nanjing Institute of Industry Technology (No. 201050619YK701), and the start-up foundation of Nanjing Forestry University (No. 163108059).

Author information

Authors and Affiliations

Authors

Contributions

This experiment was designed and the manuscript was written by FXL. Also, LX, JX, and YZ reviewed and confirmed. This study was supervised and funded by WY and AM.

Corresponding authors

Correspondence to Ali Movahedi or Wenguo Yang.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Figure S1. Statistical chart of long repeats. (JPG 147 kb)

11033_2020_5567_MOESM2_ESM.jpg

Supplementary file2 Figure S2. Mauve alignment of plastid genomes of 8 species of Myrtaceae. The C. rigidus R.Br.genome is shown at the top as the reference genome. Within each of the alignments, local collinear blocks are represented by blocks of the same color connected by lines. Note: The rectangular block in the figure represents the similarity between genomes, and the lines between the rectangular blocks represent the collinear relationship. The short squares represent the gene locations of the genomes. Among them, white represents CDs, green represents tRNA, and red represents rRNA (JPG 549 kb)

11033_2020_5567_MOESM3_ESM.xlsx

Supplementary file3 Table S1. Summary of the plastid genome features of the 30 Myrtaceae, 1 Punica granatum, and 1 Lagerstroemia venusta studied. (XLSX 13 kb)

11033_2020_5567_MOESM4_ESM.xlsx

Supplementary file4 Table S2. Codon-anticodon recognition patterns and codon usage of the Callistemon rigidus R.Br. plastid (XLSX 12 kb)

Supplementary file5 Table S3. Intron number of ycf3 in the Callistemon rigidus R.Br. plastid (XLSX 9 kb)

11033_2020_5567_MOESM6_ESM.xlsx

Supplementary file6 Table S4. Simple sequence repeats (SSRs) in the Callistemon rigidus R.Br. plastid genome (XLSX 19 kb)

Supplementary file7 Table S5. Long repeat sequences in the Callistemon rigidus R.Br. plastid genome (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Movahedi, A., Yang, W. et al. The complete chloroplast genome and characteristics analysis of Callistemon rigidus R.Br.. Mol Biol Rep 47, 5013–5024 (2020). https://doi.org/10.1007/s11033-020-05567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05567-4

Keywords

Navigation