Skip to main content
Log in

Improvement in fast Na-ion conduction in Na3+xCrxTi2−x(PO4)3 glass–ceramic electrolyte material for Na-ion batteries

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this report, efforts were made to investigate and characterize a variety of compositions in a glass system of general formula Na3+xCrxTi2−x(PO4)3 (x = 0, 0.25, 0.5 and 0.75 mol%, designated as NCTPx) to optimize their properties for use in Na-ion batteries. Several crystalline phases such as Na3Ti2(PO4)3 (COD-4106515) (NASICON), Cr2O3 (ICSD-25781) and Cr(PO3)3 (ICSD-39410) are precipitated during the process of crystallization. The microstructures of all the glass and glass–ceramic samples are analyzed using SEM and are correlated with powder XRD to explain the ionic conductivity for a given glass–ceramic sample. Single semicircle in the complex impedance plots clearly suggests that the present NCTPx glass samples exhibit a predominantly single-ion conduction mechanism. Electrical conductivity data follow the Arrhenius equation. The power-law exponent ‘s’ is observed to be the lowest (0.70) for the best conducting glass–ceramic sample NTCP0.5 (4.24 × 10−4 S/cm). The electrical modulus study proves that the conductivity relaxation of NCTPx glass–ceramic samples is temperature independent. Scaling behavior in the normalized spectra indicates that frequency-dependent relaxation behavior is unaffected by the temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Energy Environ. Sci. 5, 5884 (2012)

    Article  CAS  Google Scholar 

  2. A. Eftekhari, D.W. Kim, J. Power Sour. 395, 336 (2018)

    Article  CAS  Google Scholar 

  3. J.Y. Hwang, S.T. Myung, Y.K. Sun, Chem. Soc. Rev. 46, 3529 (2017)

    Article  CAS  Google Scholar 

  4. P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 57, 102 (2018)

    Article  CAS  Google Scholar 

  5. T. Minami, A. Hayashi, M. Tatsumisago, Solid State Ion 177, 2715 (2006)

    Article  CAS  Google Scholar 

  6. K. Takada, J. Power Sour. 394, 74 (2018)

    Article  CAS  Google Scholar 

  7. M. Illbeigi, A. Fazlali, M. Kazazi, A.H. Mohammadi, J. Electroceram. 40, 180 (2018)

    Article  CAS  Google Scholar 

  8. M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Phys. Chem. C 122, 16498–16509 (2018)

    Article  CAS  Google Scholar 

  9. F.S. Razavi, M.S. Morassaei, A. Salehabadi, M. Ghiyasiyan-Arani, M. Salavati-Niasari, J. Alloys Compd. 777, 252–258 (2019)

    Article  CAS  Google Scholar 

  10. A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 3, 856 (2012)

    Article  Google Scholar 

  11. M. Tatsumisago, A. Hayashi, Int. J. Appl. Glass Sci. 5, 226 (2014)

    Article  CAS  Google Scholar 

  12. T. Honma, M. Okamoto, T. Togashi, N. Ito, K. Shinozaki, T. Komatsu, Solid State Ion 269, 19 (2015)

    Article  CAS  Google Scholar 

  13. T. Okada, T. Honma, T. Komatsu, Mater. Res. Bull. 45, 1443 (2010)

    Article  CAS  Google Scholar 

  14. K.I. Cho, S.H. Lee, D.W. Shin, Y.K. Sun, Electrochim. Acta 52, 1576 (2006)

    Article  CAS  Google Scholar 

  15. S.S. Gundale, A. Deshpande, Electrochim. Acta 265, 65 (2018)

    Article  CAS  Google Scholar 

  16. S. Gandi, S.R. Chinta, P.K. Ojha, M.S. Surendra-Babu, B.R. Ravuri, J. Am. Ceram. Soc. 101, 167 (2018)

    Article  CAS  Google Scholar 

  17. G. Sundar, G. Suman, K.N. Kumar, D.P. Dutta, R.B. Rao, J. Phys. Chem. Solids 126, 209 (2019)

    Article  CAS  Google Scholar 

  18. S. Gandi, S.R. Chinta, P.K. Ojha, B.R. Ravuri, J. Non-Cryst. Solids 493, 41 (2018)

    Article  CAS  Google Scholar 

  19. G. Suman, C.S. Rao, P.K. Ojha, M.S. Babu, R.B. Rao, J. Mater. Sci. 52, 5038 (2017)

    Article  CAS  Google Scholar 

  20. J. Henry, R. Hill, J. Non-Cryst. Solids 319, 1 (2003)

    Article  CAS  Google Scholar 

  21. J. Park, A. Ozturk, Thermochim. Acta 470(1–2), 60 (2008)

    Article  CAS  Google Scholar 

  22. A. Dias, M. Lopes, I.R. Gibson, J. Santos, J. Non-Cryst. Solids 330, 81 (2003)

    Article  CAS  Google Scholar 

  23. P. Zhang, H. Wang, Q. Si, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ion 272, 101 (2015)

    Article  CAS  Google Scholar 

  24. H. Song, S.W. Yun, H.H. Chun, M.G. Kim, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Energy Environ. Sci. 5, 9903 (2012)

    Article  CAS  Google Scholar 

  25. P. Goharian, B.E. Yekta, A. Aghaei, S. Banijamali, J. Non-Cryst. Solids 409, 120 (2015)

    Article  CAS  Google Scholar 

  26. Y. Zhu, L. Li, C. Li, L. Zhou, Y. Wu, Solid State Ion 289, 113 (2016)

    Article  CAS  Google Scholar 

  27. Q. Zhang, Z. Wen, Y. Liu, S. Song, X. Wu, J. Alloys Compd. 479, 494 (2009)

    Article  CAS  Google Scholar 

  28. C.K.K. Reddy, G. Suman, R.B. Rao, N.K. Katari, M. Reddy, Appl. Nanosci. 6, 1043 (2016)

    Article  CAS  Google Scholar 

  29. A. Verhoef, H. Den Hartog, Solid State Ion 68, 305 (1994)

    Article  CAS  Google Scholar 

  30. P. Muralidharan, N. Nallamuthu, I. Prakash, N. Satyanarayana, M. Venkateswarlu, J. Am. Ceram. Soc. 90, 125 (2007)

    Article  CAS  Google Scholar 

  31. C. Moynihan, Phys. Chem. Glasses 14, 122 (1973)

    CAS  Google Scholar 

  32. C.T. Moynihan, J. Non-Cryst. Solids 172, 1395 (1994)

    Article  Google Scholar 

  33. S. Bhattacharya, A. Ghosh, Solid State Ion 161, 61 (2003)

    Article  CAS  Google Scholar 

  34. V.V. Gowda, R. Anavekar, J. Mater. Sci. 42, 3816 (2007)

    Article  CAS  Google Scholar 

  35. B. Chowdari, R. Gopalakrishnan, S. Goh, K. Tan, J. Mater. Sci. 23, 1248 (1988)

    Article  CAS  Google Scholar 

  36. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  Google Scholar 

  37. T.B. Schrøder, J.C. Dyre, Phys. Rev. Lett. 84, 310 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work, provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Govt. of India, Grant No: 34/14/06/2018-BRNS/34082, is gratefully acknowledged. The authors thank Dr. K.S Rama Rao, Sr. Principal Scientist, CSIR-Indian Institute of Chemical Technology, Hyderabad, India, for kindly extending the facility to acquire SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Rao Ravuri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandi, S.S., Gandi, S., Katari, N.K. et al. Improvement in fast Na-ion conduction in Na3+xCrxTi2−x(PO4)3 glass–ceramic electrolyte material for Na-ion batteries. J IRAN CHEM SOC 17, 2637–2649 (2020). https://doi.org/10.1007/s13738-020-01960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01960-9

Keywords

Navigation