Skip to main content
Log in

Recycled-based thermosetting material obtained from the decomposition of polyurethane foam wastes with castor oil

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this work, a castor-oil-based process for flexible polyurethane foam scrap decomposition was used to prepare a recycled-based polyurethane foam. Decomposed polyurethane (DP) and 4,4′ diphenylmethane diisocyanate (MDI) were polymerized at three distinct MDI/DP ratios (1.0/2.2, 1.0/2.7 and 1.0/3.2) and two curing times (15 and 50 min). The influence of castor oil on the decomposition process and subsequent synthesis of polyurethane foam were evaluated using Fourier transform infrared spectroscopy (FTIR). Further characterization of the final material was carried out through thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and mechanical testing. FTIR assessment showed the presence of multi-functional hydroxyl groups as a result of the decomposition process. TGA confirmed three thermal degradation zones between 160 ℃ and 535 ℃ indicating the degradation of non-reacted compounds as well as the presence of oligomers, fatty acid chains, and urethane network. Mechanical evaluation evidenced that the MDI/DP ratios had a significant effect on tensile properties. The addition of DP increased the elongation at break and reduced the tensile strength with a slight variation of curing time. From the perspective of pore size, SEM micrographs exhibited that cell size apparently decreased with the addition of the DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cruz F, Boudaoud H, Hoppe S, Camargo M (2017) Polymer recycling in an open-source additive manufacturing context: mechanical issues. Addit Manuf 17:87–105

    Google Scholar 

  2. Huo S, Jin C, Liu G, Chen J, Wu G, Kong Z (2019) Preparation and properties of biobased autocatalytic polyols and their polyurethane foams. Polym Degrad Stab 159:62–69

    Google Scholar 

  3. Yang J, Yang W, Wang X, Dong M, Liu H, Wujcik EK, Guo Z (2019) Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol Chem Phys 220:1800567

    Google Scholar 

  4. Dong M, Li Q, Liu H, Liu C, Wujcik EK, Shao Q, Guo Z (2018) Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer (Guildf) 158:381–390

    Google Scholar 

  5. Dong M, Wang C, Liu H, Liu C, Shen C, Zhang J, Guo Z (2019) Enhanced solid particle erosion properties of thermoplastic polyurethane-carbon nanotube nanocomposites. Macromol Mater Eng 304:1–11

    Google Scholar 

  6. Hang S, Liu H, Yang S, Shi X, Zhang D, Shan C, Guo Z (2019) Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl Mater Interfaces 11:10922–10932

    Google Scholar 

  7. Tantisattayakul T, Kanchanapiya P, Methacanon P (2018) Comparative waste management options for rigid polyurethane foam waste in Thailand. J Clean Prod 196:1576–1586

    Google Scholar 

  8. Moon J, Kwak SB, Lee JY, Kim D, Ha JU, Oh JS (2019) Synthesis of polyurethane foam from ultrasonically decrosslinked automotive seat cushions. Waste Manag 85:557–562

    Google Scholar 

  9. Członka S, Bertino MF, Strzelec K (2018) Rigid polyurethane foams reinforced with industrial potato protein. Polym Test 68:135–145

    Google Scholar 

  10. Yang W, Dong Q, Liu S, Xie H, Liu L, Li J (2012) Recycling and disposal methods for polyurethane foam wastes. Procedia Environ Sci 16:167–175

    Google Scholar 

  11. Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552

    Google Scholar 

  12. Datta J, Marcin W (2017) Recycling of polyurethanes. In: Polyurethane polymers, 1st edn. MPS limited, Chennai, pp 323–358

  13. Beneš H, Černá R, Ďuračková A, Látalová P (2012) Utilization of natural oils for decomposition of polyurethanes. J Polym Environ 20:175–185

    Google Scholar 

  14. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67:675–692

    Google Scholar 

  15. Li Y, Lv L, Wang W, Zhang J, Lin J, Zhou J, Dong M, Yuanfa G, Seok I, Guo Z (2020) Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: Flame retardancy and mechanical properties. Polymer 190:122198

    Google Scholar 

  16. Cho SJ, Kim KH, Jung HY, Kwon OJ, Seo YC (2010) Characteristics of products and PCDD/DF emissions from a pyrolysis process of urethane/styrofoam waste from electrical home appliances. J Mater Cycles Waste Manag 12:98–102

    Google Scholar 

  17. Badawy SM (2013) Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups. J Mater Cycles Waste Manag 15:218–222

    Google Scholar 

  18. Li Y, Lv L, Wang W, Zhang J, Lin J, Zhou J, Guo Z (2020) Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: flame retardancy and mechanical properties. Polymer (Guildf) 190:122198

    Google Scholar 

  19. Kong Y, Li Y, Hu G, Cao N, Ling Y, Pan D, Guo Z (2018) Effects of polystyrene-b-poly(ethylene/propylene)-b-polystyrene compatibilizer on the recycled polypropylene and recycled high-impact polystyrene blends. Polym Adv Technol 29:2344–2351

    Google Scholar 

  20. Kong Y, Li Y, Hu G, Lin J, Pan D, Dong D, Guo Z (2018) Preparation of polystyrene-b-poly(ethylene/propylene)-b-polystyrene grafted glycidyl methacrylate and its compatibility with recycled polypropylene/recycled high impact polystyrene blends. Polymer (Guildf) 145:232–241

    Google Scholar 

  21. Li Y, Wu X, Song J, Li J, Shao Q, Cao N, Guo Z (2017) Reparation of recycled acrylonitrile-butadiene-styrene by pyromellitic dianhydride: reparation performance evaluation and property analysis. Polymer (Guildf) 124:41–47

    Google Scholar 

  22. Simón D, Borreguero AM, De Lucas A, Molero C, Rodríguez JF (2014) (2014) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manag 16:525–532

    Google Scholar 

  23. Molero C, De Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manag 11:130–132

    Google Scholar 

  24. Carriço CS, Fraga T, Pasa VMD (2016) Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur Polym J 85:53–61

    Google Scholar 

  25. Aguado A, Martínez L, Moral A, Fermoso J, Irusta R (2011) Chemical Recycling of Polyurethane Foam Waste Via Glycolysis. Chem Eng Trans 24:1069–1074

    Google Scholar 

  26. Dalen MB, Ibrahim AQ, Adamu HM (2014) Effects of low castor oil on mechanical properties of polyurethane foams. Br J Appl Sci Technol 4:2661–2683

    Google Scholar 

  27. Borreguero AM, De Lucas A, Rodríguez JF, Sim D (2015) Valorization of crude glycerol as a novel transesterification agent in the glycolysis of polyurethane foam waste. Polym Degrad Stabil 121:126–136

    Google Scholar 

  28. Bene H, Rais D (2013) Recycling of waste poly (ethylene terephthalate) with castor oil using microwave heating Hynek Bene. Polym Degrad Stabil 98:2232–2243

    Google Scholar 

  29. Risti IS, Cincovi MM, Stojiljkovi DT, János CJ, Miroslav CJ, Stamenkovi JV (2015) Progress in organic coatings glycolyzed poly (ethylene terephthalate) waste and castor oil-based polyols for waterborne polyurethane adhesives containing hexamethoxymethyl melamine. Prog Org Coat 78:357–368

    Google Scholar 

  30. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Google Scholar 

  31. Calvo-Correas T, Eceiza A, Datta J (2016) Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling. Eur Polym J 85:26–37

    Google Scholar 

  32. Trzebiatowska PJ, Deuter I, Datta J (2017) Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process. React Funct Polym 119:20–25

    Google Scholar 

  33. Hummel DO (2002) Atlas of plastics additives analysis by spectrometric methods. Springer and Business Media, Berlin Heidelberg

    Google Scholar 

  34. Szycher M (2013) Szycher’s handbook of polyurethanes Second. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  35. Stuart BH (2004) Spectral analysis Infrared spectroscopy: fundamentals and applications. John Wiley Sons Ltd, Hoboken

    Google Scholar 

  36. Asefnejad A, Khorasani MT, Behnamghader A, Farsadzadeh B, Bonakdar S (2011) Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method : physical properties and in vitro assay. Int J Nanomed 6:2375–2384

    Google Scholar 

  37. Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J 49(6):1174–1184

    Google Scholar 

  38. Pulido JE, Cabrera JM, Navas KJ, Valero MF (2007) Síntesis y caracterización de elastómeros de poliuretano a partir de poliol-suspensiones de aceite de higuerilla y almidón de yuca. Rev Fac Ing 39:100–111

    Google Scholar 

  39. Valero MF, Pulido JE, Ramírez Á, Higuita LE, Arias SM, Gonzáles CS (2010) Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas. Quím Nova 33(4):850–854

    Google Scholar 

  40. Kraitape N, Thongpin C (2016) Influence of recycled polyurethane polyol on the properties of flexible polyurethane foams. Energy Procedia 89:186–197

    Google Scholar 

  41. Maheo L, Viot P, Bernard D, Chirazi A, Ceglia G, Schmitt V, Mondain-Monval O (2013) Composites : part B elastic behavior of multi-scale, open-cell foams. Compos Part B 44(1):172–183

    Google Scholar 

  42. Rampf M, Speck O, Speck T, Luchsinger RH (2012) Structural and mechanical properties of flexible polyurethane foams cured under pressure. J Cell Plast 48(1):53–69

    Google Scholar 

  43. Hinrichsen G (1994) Polyurethane handbook. Edited by G. Oertel, Hanser Publishers, Munich 1993, 770 pp., DM 358, ISBN 3‐446‐17198‐3. Acta Polym 45(5):398–398

    Google Scholar 

  44. Rojek P, Prociak A (2012) Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci 125(4):2936–2945

    Google Scholar 

  45. Jiao C, Shao Q, Wu M, Zheng B, Guo Z, Yi J, Guo Z (2020) 2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: preparation and property analysis”. Polymer (Guildf) 190:122196

    Google Scholar 

  46. Gu H, Zhang H, Ma C, Xu X, Wang Y, Wang Z, Mai X (2019) Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: simultaneously strengthening and toughening epoxy. Carbon N Y 142:131–140

    Google Scholar 

  47. Hu Z, Zhang D, Lu F, Yuan W, Xu X, Zhang Q, Huang Y (2018) Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions. Macromolecules 51(14):5294–5303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina E. Almeida-Naranjo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, V., Aguirre, C., Aldás, M. et al. Recycled-based thermosetting material obtained from the decomposition of polyurethane foam wastes with castor oil. J Mater Cycles Waste Manag 22, 1793–1800 (2020). https://doi.org/10.1007/s10163-020-01068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01068-5

Keywords

Navigation