Skip to main content

Advertisement

Log in

Evolutionary Patterns of Mandible Shape Diversification of Caviomorph Rodents

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Caviomorphs are a mainly South American rodent clade with high taxonomic and ecomorphological diversity. In this study, we combine geometric morphometric, functional, ancestral reconstruction, and macroevolutionary analyses to quantify the magnitude, direction, and rates of shape diversification of the caviomorph mandible, and to explore the morpho-functional implications and potential ecological catalysts of the observed shape changes. The mandible shape was significantly related to habits and size, and had a better fit with an evolutionary model where the main clades occupy distinct adaptive peaks. The morphological evolution of octodontoids is characterized by pulses of rate acceleration, but without reaching high disparity. Such pulses are mainly linked to the acquisition of fossorial specializations, including short and robust mandibles, and the increasement of forces at incisors. Conversely, derived cavioids show slower but continuous shape changes that allowed them to reach the most divergent, grazing morphologies in which slender mandibles with more marked antero-posterior movements for grinding action are favored. Interestingly, the major morphological changes occurred mainly during the early Oligocene and lower late Miocene, two time periods that involved global climatic events and strong changes in the vegetational structure of South America. The evolution of octodontoid and cavioid mandibles seems to be related to the occupation of subterranean and epigean niches, respectively, in the progressively expanded Cenozoic open landscapes of southern South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez A, Ercoli MD, Verzi DH (2020) Integration and diversity of the caviomorph mandible (Hystricomorpha, Rodentia): accessing to the evolutionary history through fossils and ancestral shape reconstructions. Zool J Linnean Soc 188:276–301

    Google Scholar 

  • Álvarez A, Moyers Arévalo RL, Verzi DH (2017) Diversification patterns and size evolution in caviomorph rodents. Biol J Linnean Soc 121:907–922

    Google Scholar 

  • Álvarez A, Pérez ME (2019) Deep changes in masticatory patterns and masseteric musculature configurations accompanied the eco-morphological evolution of cavioid rodents (Hystricognathi, Caviomorpha). Mammal Biol 96:53–60

    Google Scholar 

  • Álvarez A, Perez SI, Verzi DH (2011) Ecological and phylogenetic influences on mandible shape variation of South American caviomorph rodents (Rodentia: Hystricomorpha). Biol J Linnean Soc 102:828–837

    Google Scholar 

  • Anderson DR, Burnham KP, White GC (1998) Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies. J Appl Stat 25:263–282

    Google Scholar 

  • Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc Royal Soc B 279:1319–1326

    Google Scholar 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-Early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50

    Google Scholar 

  • Becerra F, Echeverría A, Casinos A, Vassallo AI (2014) Another one bites the dust: bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). J Exp Zool A Ecol Genet Physiol 321:220–232

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695

  • Casanovas-Vilar I, van Dam J (2013) Conservatism and adaptability during squirrel radiation: what is mandible shape telling us? PLoS ONE 8:e61298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassini GH, Vizcaíno SF, Bargo MS (2012) Body mass estimation in early Miocene native South American ungulates: a predictive equation based on 3D landmarks. J Zool 287:53–64

  • Catalano SA, Goloboff PA (2012) Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Syst Biol 61:392–400

    CAS  PubMed  Google Scholar 

  • Clavel J, Escarguel G, Merceron G (2015) mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol Evol 6:1311–1319

    Google Scholar 

  • Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N (2012) Functional evolution of the feeding system in rodents. PLoS ONE 7:e36299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Druzinsky RE (2010a) Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents- Part 2: Sciuromorphy is efficacious for production of force at the incisors. Cells Tissues Organs 192:50–63

  • Druzinsky RE (2010b) Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents- Part 1: Masticatory muscles, skull shape and digging. Cells Tissues Organs 191:510–522

  • Emerson SB, Radinsky L (1980) Functional analysis of sabertooth cranial morphology. Paleobiology 6:295–312

    Google Scholar 

  • Emmons LH, Fabre P (2018) A review of the Pattonomys/Toromys clade (Rodentia: Echimyidae), with descriptions of a new Toromys species and a new genus. Am Mus Novitates 3894:1–52

    Google Scholar 

  • Fabre P-H, Hautier L, Dimitrov D, Douzery EJP (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:88

    PubMed  PubMed Central  Google Scholar 

  • Fabre P-H, Upham NS, Emmons LH, Justy F, Leite YLR, Loss AC, Orlando L, Tilak M-K, Patterson BD, Douzery EJP (2017) Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Mol Biol Evol 34:613–633

    CAS  PubMed  Google Scholar 

  • Fergnani PN, Ruggiero A (2017) The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: the importance of climate at extra-tropical latitudes and history towards the tropics. PLoS ONE 12:e0184057

    PubMed  PubMed Central  Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    CAS  PubMed  Google Scholar 

  • Goloboff PA, Catalano SA (2010) Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 26:1–10

    Google Scholar 

  • Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221–238

    Google Scholar 

  • Goloboff PA, Farris JS, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Google Scholar 

  • Gomes Rodrigues H, Šumbera R, Hautier L (2016) Life in burrows channelled the morphological evolution of the skull in rodents: the case of African mole-rats (Bathyergidae, Rodentia). J Mammal Evol 23:175–189

    Google Scholar 

  • Greaves WS (2012) Mammalian Jaw. A Mechanical Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

  • Harmon LK, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte II, JA, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ (2010) Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–2396

    PubMed  Google Scholar 

  • Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. J Morphol 273:1319–1337

  • Hautier L, Lebrun R, Saksiri S, Michaux J, Vianey-Liaud M, Marivaux L (2011) Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS ONE 6:e18698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herring SW, Herring SE (1974) The superficial masseter and gape in mammals. Am Nat 108:561–576

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11:353–357

    Google Scholar 

  • Lessa EP, Vassallo AI, Verzi DH, Mora MS (2008) Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol J Linnean Soc 95:267–283

    Google Scholar 

  • Maestri R, Patterson BD, Fornel R, Monteiro LR, de Fretias TRO (2016) Diet, bite force and skull morphology in the generalist rodent morphotype. J Evol Biol 29:2191–2204

    CAS  PubMed  Google Scholar 

  • Mahler DL, Revell LJ, Glor RE, Losos JB (2010) Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64:2731–2745

    PubMed  Google Scholar 

  • Marivaux L, Boivin M (2019) Emergence of hystricognathous rodents: Palaeogene fossil record, phylogeny, dental evolution and historical biogeography. Zool J Linnean Soc 187:929–964 https://doi.org/10.1093/zoolinnean/zlz048

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Google Scholar 

  • Maynard Smith J, Savage RJG (1959) The mechanics of mammalian jaws. Sch Sci Rev 141:289–301

    Google Scholar 

  • McIntosh AF, Cox PG (2016) Functional implications of craniomandibular morphology in African molerats (Rodentia: Bathyergidae). Biol J Linnean Soc 117:447–462

    Google Scholar 

  • McIntosh AF, Cox PG (2019) The impact of digging on the evolution of the rodent mandible. J Morphol 280:176–183

    PubMed  Google Scholar 

  • Morgan CC, Verzi DH, Olivares AI, Vieytes EC (2017) Craniodental and forelimb specializations for digging in the South American subterranean rodent Ctenomys (Hystricomorpha, Ctenomyidae). Mammal Biol 87:118–124

    Google Scholar 

  • Olivares AI, Verzi DH, Vassallo AI (2004) Masticatory morphological diversity and chewing modes in octodontid rodents (Rodentia, Octodontidae). J Zool 263:167–177

  • Orme CDL, Freckleton RP, Thomas G, Petzoldt T, Fritz SA (2011) Caper: Comparative Analysis of Phylogenetics and Evolution in R. Available at: http://CRAN.R-project.org/package=caper

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America, Vol 2, Rodents. University of Chicago Press, Chicago

    Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9:e89543

  • Rabosky DL, Grundler M, Anderson C, Shi JJ, Brown JW, Huang H, Larson JG (2014) BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol 5:701–707

  • Radinsky L (1985) Patterns in the evolution of ungulate jaw shape. Am Zool 25:303–314

    Google Scholar 

  • Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503

    PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Google Scholar 

  • Rohlf FJ (2015) Tpsdig, version 2.15; tpsrelw, version 1.54. Stony Brook, NY: State University of New York at Stony Brook. Available at: http://life.bio.sunysb.edu/morph/

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47:507–32

    Google Scholar 

  • Tavares W, Pessôa LM, Seuánez HN (2016) Stability and acceleration of phenotypic evolution in spiny rats (Trinomys, Echimyidae) across different environments. Zool J Linnean Soc 178:149–162

    Google Scholar 

  • Townsend KE, Croft DA (2008) Enamel microwear in caviomorph rodents. J Mammal 89:728–742

    Google Scholar 

  • Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana (Geol) 18:147–356

    Google Scholar 

  • Upham NS, Patterson BD (2015) Phylogeny and evolution of caviomorph rodents: a complete timetree for living genera. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. SAREM, Buenos Aires, pp 63–120

    Google Scholar 

  • Vassallo AI, Verzi DH (2001) Patrones craneanos y modalidades de masticación en roedores caviomorfos (Rodentia, Caviomorpha). Bol Soc Biol Concepción, Chile 72:145–151

    Google Scholar 

  • Verzi DH (2002) Patrones de evolución morfológica en Ctenomyinae (Rodentia, Octodontidae). Mastozool Neotrop 9:309–328

  • Verzi DH, Olivares AI, Morgan CC, Álvarez A (2016) Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae. J Mammal Evol 23:93–115

    Google Scholar 

  • Vrba ES (2005) Mass turnover and heterochrony events in response to physical change. Paleobiology 31:157–174

    Google Scholar 

  • Vucetich MG, Arnal M, Deschamps CM, Pérez ME, Vieytes CE (2015) A brief history of caviomorph rodents as told by the fossil record. In: Vassallo AI, Antenucci D (eds) Biology of Caviomorph Rodents: Diversity and Evolution. SAREM, Buenos Aires, pp 11–62

    Google Scholar 

  • Wilson DE, Lacher TE Jr, Mittermeier RA (eds) (2016) Handbook of Mammals of the World. Vol 6. Lagomorphs and Rodents I. Lynx Edicions, Barcelona

    Google Scholar 

  • Woods CA (1972) Comparative myology of jaw, hyoid and pectoral appendicular regions of New and Old World hystricomorph rodents. Bull Am Mus Nat Hist 147:115–198

    Google Scholar 

Download references

Acknowledgements

We especially thank P. Teta, G. Cassini, S. Lucero (MACN); D. Romero, N. Martino (MMP), R. Ojeda (IADIZA), R. Bárquez, M. Díaz (CML), M. de Vivo (USP), J. Oliveira (UFRJ), W. Kliem (UFBA), Victor Pacheco (MUSM), and B. Patterson (FMNH) for granting access to osteological materials under their care. We thank S. Vizcaíno for suggestions on an early version of the manuscript. We thank S. Catalano, H. Morlon, F. Condamine, and I. Perez for help with methods. To Guest Editor G. Cassini, P. Cox, and an anonymous reviewer for their comments that greatly improved the original manuscript. The authors thank Sergio Vizcaíno, Néstor Toledo, and Guillermo Cassini for their invitation to participate in the Symposium “El paradigma de correlación forma-función en mastozoología: un tributo a Leonard Radinsky (1937–1985)” in the XXXI Jornadas Argentinas de Mastozoología during November 2018, and in this related special issue.

Funding

This study was funded by ANPCyT PICT-2016-2881 and UNLP 11/N822 grants. We thank CONICET and Fulbright Commission, and IOM, for financial support for visiting the FMNH collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Álvarez.

Electronic Supplementary Material

Online Resource 1

List of taxa and specimens examined. (RTF 118 kb)

Online Resource 2

Schematized representation of the methodology followed in this study, combining geometric morphometric data, ecological classifications and a time-calibrated tree (i.e., input data, orange plain arrows), and macroevolutionary and morphofunctional analyses (gray stripped arrows). White boxes indicated intermediate data, painted boxes represent results shown and discussed in main text. Functional traits values were used only for PGLS analyses and not for the assessment of evolutionary models. (PDF 547 kb)

Online Resource 3

Landmarks and semilandmarks definitions considered in this contribution (following Álvarez et al. 2020). (RTF 54.9 kb)

Online Resource 4

Phylogeny used in analyses, taken from Álvarez et al. (2017). Numerical codes (HTU) for nodes are shown. (PDF 550 kb)

Online Resource 5

Plot of the two first principal components of the PCA performed on the aligned coordinates exported from TNT, including the terminals and nodes. Phylogenetic relationships at familiar and higher levels (dark green) or between familiar and genus levels (pale green) are illustrated in a phylomorphospace-like graph. Genus and family names are labeled, see numerical codes of Online Resource 4 for other nodes and terminals. See Álvarez et al. (2020) for a detailed explanation of a PCA analysis performed in a similar dataset. (PDF 626 kb)

Online Resource 6

Data for Habitat, Habit and lnCS for each caviomorph species studied. Bibliographic sources for ecological variables are given. (XLS 73 kb)

Online Resource 7

The 95% credible set of 9 shift configurations from the BAMM shape diversification analysis of caviomorph rodents. The breaks method selected to plotting colors was the jenks method. (PDF 361 kb)

Online Resource 8

Values of functional variables analyzed (most anterior insertion of the masseteric muscle, length of coronoid process, length of ventral masseteric crest, height of condylar process). Estimations were made for tree terminals (i.e., extant species) and nodes (ancestral shapes; HTU, see Online Resource 4 for location of each node on the phylogeny). Euclidean distances were estimated taking into account all the Principal Components of a PC analysis carried out on a dataset involving the Procrustes Coordinates obtained from the optimization of mandible shape in TNT. (XLS 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, A., Ercoli, M.D., Olivares, A.I. et al. Evolutionary Patterns of Mandible Shape Diversification of Caviomorph Rodents. J Mammal Evol 28, 47–58 (2021). https://doi.org/10.1007/s10914-020-09511-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-020-09511-y

Keywords

Navigation