Skip to main content
Log in

Effect of loading rate on fracture mechanics of NiTi SMA

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Superelastic NiTi shape memory alloy is characterized by phase transformation under loading. In this work, the effect of loading rate on fracture mechanics of NiTi is investigated. First, to characterize the behavior of the material, tensile experiments are conducted on dog-bone specimens at different quasi-static-range loading rates and the transformation stresses–strains are calculated. An increase in forward transformation stresses–strains, and a decrease in the reverse transformation stresses–strains with increasing loading rate is observed. Surface mean temperature is measured using a thermal camera, and an increase in temperature difference is observed with increasing loading rate. Displacement field and strain maps are obtained simultaneously using Digital Image Correlation (DIC). The strain maps show strain localizations that change with increasing loading rate. At higher loading rates, localized strain bands increase in number. Fracture experiments are then conducted under Mode I loading on plane stress Compact Tension (CT) specimens, and for further confirmation of the behavior, Finite Element Analysis (FEA) is used with a user defined subroutine to account for thermomechanical coupling. Crack mouth opening displacements (CMODs) are measured and an increase with increasing loading rate is observed. Stress Intensity Factors (SIFs) are calculated using ASTM E399 equations, the displacement data obtained from DIC, and FEA. In all cases, stress intensity factors show an increasing-decreasing trend with increasing loading rate. Results are summarized in a figure to show the trend. Austenite to martensite transformation region sizes around the crack tip are evaluated experimentally, analytically and computationally, and are found to be decreasing with increasing loading rate as well. An interesting but coherent behavior in change of fracture parameters with increasing loading rate is obtained. This study is expected to stimulate new discussions on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adharapurapu RR, Jiang F, Vecchio KS, Gray GT (2006) Response of niti shape memory alloy at high strain rate: a systematic investigation of temperature effects on tension-compression asymmetry. Acta Mater 54(17):4609–4620

    CAS  Google Scholar 

  • Afshar A, Ardakani SH, Hashemi S, Mohammadi S (2015) Numerical analysis of crack tip fields in interface fracture of sma/elastic bi-materials. Int J Fract 195(1–2):39–52

    CAS  Google Scholar 

  • Ahadi A, Sun Q (2016) Grain size dependence of fracture toughness and crack-growth resistance of superelastic niti. Script Mater 113:171–175

    CAS  Google Scholar 

  • Ardakani SH, Ahmadian H, Mohammadi S (2015) Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method. Smart Mater Struct 24(4):045031

    Google Scholar 

  • Ardakani SH, Afshar A, Mohammadi S (2016) Numerical study of thermo-mechanical coupling effects on crack tip fields of mixed-mode fracture in pseudoelastic shape memory alloys. Int J Solids Struct 81:160–178

    Google Scholar 

  • ASTM-E399 (2012) Standard test method for linear-elastic plane-strain fracture toughness kic of metallic materials. ASTM Standard

  • Auricchio F, Fugazza D, Desroches R (2008) Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications. J Intell Mater Syst Struct 19(1):47–61

    Google Scholar 

  • Baxevanis T, Lagoudas D (2012) A mode i fracture analysis of a center-cracked infinite shape memory alloy plate under plane stress. Int J Fract 175(2):151–166

    Google Scholar 

  • Baxevanis T, Chemisky Y, Lagoudas D (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012

    Google Scholar 

  • Baxevanis T, Parrinello A, Lagoudas D (2013) On the fracture toughness enhancement due to stress-induced phase transformation in shape memory alloys. Int J Plast 50:158–169

    CAS  Google Scholar 

  • Baxevanis T, Landis CM, Lagoudas DC (2014a) On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81(10):101006

    Google Scholar 

  • Baxevanis T, Landis CM, Lagoudas DC (2014b) On the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81(4):041005

    Google Scholar 

  • Baxevanis T, Parrinello A, Lagoudas D (2016) On the driving force for crack growth during thermal actuation of shape memory alloys. J Mech Phys Solids 89:255–271

    CAS  Google Scholar 

  • Brinson LC, Schmidt I, Lammering R (2002) Micro and macromechanical investigations of cualni single crystal and cualmnzn polycrystalline shape memory alloys. J Intell Mater Syst Struct 13(12):761–772

    CAS  Google Scholar 

  • Creuziger A, Bartol L, Gall K, Crone W (2008) Fracture in single crystal niti. J Mech Phys Solids 56(9):2896–2905

    CAS  Google Scholar 

  • Daly S, Miller A, Ravichandran G, Bhattacharya K (2007) An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater 55(18):6322–6330

    CAS  Google Scholar 

  • Dayananda G, Rao MS (2008) Effect of strain rate on properties of superelastic niti thin wires. Mater Sci Eng A 486(1–2):96–103

    Google Scholar 

  • Duerig T, Bhattacharya K (2015) The influence of the r-phase on the superelastic behavior of niti. Shape memory superelast 1(2):153–161

    Google Scholar 

  • Freed Y, Banks-Sills L (2007) Crack growth resistance of shape memory alloys by means of a cohesive zone model. J Mech Phys Solids 55(10):2157–2180

    CAS  Google Scholar 

  • Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in ni-ti-based shape memory alloys. Acta Mater 90:213–231

    CAS  Google Scholar 

  • Gall K, Yang N, Sehitoglu H, Chumlyakov YI (2001) Fracture of precipitated niti shape memory alloys. Int J Fract 109(2):189–207

    CAS  Google Scholar 

  • Gollerthan S, Young M, Baruj A, Frenzel J, Schmahl WW, Eggeler G (2009a) Fracture mechanics and microstructure in niti shape memory alloys. Acta Mater 57(4):1015–1025

    CAS  Google Scholar 

  • Gollerthan S, Young M, Neuking K, Ramamurty U, Eggeler G (2009b) Direct physical evidence for the back-transformation of stress-induced martensite in the vicinity of cracks in pseudoelastic niti shape memory alloys. Acta Mater 57(19):5892–5897

    CAS  Google Scholar 

  • Grabe C, Bruhns OT (2008) On the viscous and strain rate dependent behavior of polycrystalline niti. Int J Solids Struct 45(7–8):1876–1895

    CAS  Google Scholar 

  • Haghgouyan B, Shafaghi N, Aydıner CC, Anlas G (2016) Experimental and computational investigation of the effect of phase transformation on fracture parameters of an sma. Smart Mater Struct 25(7):075010

    Google Scholar 

  • Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of niti-towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238

    CAS  Google Scholar 

  • Hazar S, Zaki W, Moumni Z, Anlas G (2015) Modeling of steady-state crack growth in shape memory alloys using a stationary method. Int J Plast 67:26–38

    CAS  Google Scholar 

  • Hazar S, Anlas G, Moumni Z (2016) Evaluation of transformation region around crack tip in shape memory alloys. Int J Fract 197(1):99–110

    CAS  Google Scholar 

  • He Y, Sun Q (2010) Frequency-dependent temperature evolution in niti shape memory alloy under cyclic loading. Smart Mater Struct 19(11):115014

    Google Scholar 

  • Holtz R, Sadananda K, Imam M (1999) Fatigue thresholds of ni-ti alloy near the shape memory transition temperature. Int J Fatig 21:S137–S145

    CAS  Google Scholar 

  • Huang H, Saletti D, Pattofatto S, Shi F, Zhao H (2013) Experimental observation of phase transformation front of sma under impact loading. In: 13th International conference of fracture, vol. 4, pp 2658–2666

  • Iadicola MA, Shaw JA (2004) Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int J Plast 20(4–5):577–605

    CAS  Google Scholar 

  • Iliopoulos A, Steuben J, Kirk T, Baxevanis T, Michopoulos J, Lagoudas D (2017) Thermomechanical failure response of notched niti coupons. Int J Solids Struct 125:265–275

    Google Scholar 

  • Imanol F, Javier Z, Laurentzi A, Germán C, Jon A, Idoia U (2008) Constitutive model taking into account the strain rate for uniaxial niti shape memory alloy under low velocity impact conditions. Smart Mater Struct 17(6):065033

    Google Scholar 

  • Jape S, Baxevanis T, Lagoudas D (2016) Stable crack growth during thermal actuation of shape memory alloys. Shape Memory Superelast 2(1):104–113

    Google Scholar 

  • Jape S, Baxevanis T, Lagoudas D (2018) On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity. Int J Fract 209(1–2):117–130

    CAS  Google Scholar 

  • Jiang F, Vecchio KS (2007) Fracture of nitinol under quasistatic and dynamic loading. Metallurg Mater Trans A 38(12):2907–2915

    Google Scholar 

  • Kadkhodaei M, Rajapakse R, Mahzoon M, Salimi M (2007) Modeling of the cyclic thermomechanical response of sma wires at different strain rates. Smart Mater Struct 16(6):2091

    Google Scholar 

  • Kan Q, Yu C, Kang G, Li J, Yan W (2016) Experimental observations on rate-dependent cyclic deformation of super-elastic niti shape memory alloy. Mech Mater 97:48–58

    Google Scholar 

  • Katanchi B, Choupani N, Khalil-Allafi J, Tavangar R, Baghani M (2018) Mixed-mode fracture of a superelastic niti alloy: experimental and numerical investigations. Eng Fract Mech 190:273–287

    Google Scholar 

  • Kim K (2013) Effects of crystallographic texture and applied strain rate on the cyclic behavior of nickel-titanium. PhD thesis, University of Michigan

  • Kim S, Cho M (2010) A strain rate effect of ni-ti shape memory alloy wire. Jpn J Appl Phys 49(11R):115801

    Google Scholar 

  • Lagoudas DC (2008) Shape memory alloys. Springer, Berlin

    Google Scholar 

  • Loughran G, Shield T, Leo P (2003) Fracture of shape memory cualni single crystals. Int J Solids Struct 40(2):271–294

    Google Scholar 

  • Luo J, He J, Wan X, Dong T, Cui Y, Xiong X (2016) Fracture properties of polycrystalline niti shape memory alloy. Mater Sci Eng A 653:122–128

    CAS  Google Scholar 

  • Maletta C (2012) A novel fracture mechanics approach for shape memory alloys with trilinear stress-strain behavior. Int J Fract 177(1):39–51

    CAS  Google Scholar 

  • Maletta C, Furgiuele F (2010) Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel-titanium alloys. Acta Mater 58(1):92–101

    CAS  Google Scholar 

  • Maletta C, Sgambitterra E, Furgiuele F (2013) Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatig Fract Eng Mater Struct 36(9):903–912

    Google Scholar 

  • Maletta C, Bruno L, Corigliano P, Crupi V, Guglielmino E (2014) Crack-tip thermal and mechanical hysteresis in shape memory alloys under fatigue loading. Mater Sci Eng A 616:281–287

    CAS  Google Scholar 

  • Maletta C, Sgambitterra E, Niccoli F (2016) Temperature dependent fracture properties of shape memory alloys: novel findings and a comprehensive model. Sci Rep 6(1):17

    Google Scholar 

  • Morin C, Moumni Z, Zaki W (2011a) A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int J Plast 27(5):748–767

    CAS  Google Scholar 

  • Morin C, Moumni Z, Zaki W (2011b) Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int J Plast 27(12):1959–1980

    CAS  Google Scholar 

  • Oral A, Lambros J, Anlas G (2008) Crack initiation in functionally graded materials under mixed mode loading: experiments and simulations. J Appl Mech 75(5):051110

    Google Scholar 

  • Özerim G, Anlaş G, Moumni Z (2018) On crack tip stress fields in pseudoelastic shape memory alloys. Int J Fract 212(2):205–217

    Google Scholar 

  • Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase-transformation fronts evolution for stress-and strain-controlled tension tests in tini shape memory alloy. Exp Mech 46(4):531–542

    CAS  Google Scholar 

  • Prahlad H, Chopra I (2003) Development of a strain-rate dependent model for uniaxial loading of SMA wires. J Intellig Mater Syst Struct 14(7):429–442

    CAS  Google Scholar 

  • Qian H, Li H, Song G, Guo W (2013) A constitutive model for superelastic shape memory alloys considering the influence of strain rate. Mathematical problems in engineering

  • Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537

    CAS  Google Scholar 

  • Robertson S, Mehta A, Pelton A, Ritchie R (2007) Evolution of crack-tip transformation zones in superelastic nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron x-ray microdiffraction analysis. Acta Mater 55(18):6198–6207

    CAS  Google Scholar 

  • Robertson S, Pelton A, Ritchie R (2012) Mechanical fatigue and fracture of nitinol. Int Mater Rev 57(1):1–37

    CAS  Google Scholar 

  • Robertson SW (2006) On the mechanical properties and microstructure of nitinol forbiomedical stent applications. Tech. rep., Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

  • Robertson SW, Ritchie RO (2007) In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28(4):700–709

    CAS  Google Scholar 

  • Roh JH (2014) Thermomechanical modeling of shape memory alloys with rate dependency on the pseudoelastic behavior. Mathematical problems in engineering 2014

  • Shaw JA, Kyriakides S (1995) Thermomechanical aspects of niti. J Mech Phys Solids 43(8):1243–1281

    CAS  Google Scholar 

  • Stebner AP, Paranjape HM, Clausen B, Brinson LC, Pelton AR (2015) In situ neutron diffraction studies of large monotonic deformations of superelastic nitinol. Shape Memory Superelast 1(2):252–267

    Google Scholar 

  • Tobushi H, Shimeno Y, Hachisuka T, Tanaka K (1998) Influence of strain rate on superelastic properties of tini shape memory alloy. Mech Mater 30(2):141–150

    Google Scholar 

  • Vitiello A, Giorleo G, Morace RE (2004) Analysis of thermomechanical behaviour of nitinol wires with high strain rates. Smart Mater Struct 14(1):215

    Google Scholar 

  • Wang G (2007) Effect of martensite transformation on fracture behavior of shape memory alloy niti in a notched specimen. Int J Fract 146(1–2):93–104

    CAS  Google Scholar 

  • Wang G, Xuan F, Tu S, Wang Z (2010) Effects of triaxial stress on martensite transformation, stress–strain and failure behavior in front of crack tips in shape memory alloy niti. Mater Sci Eng A 527(6):1529–1536

    Google Scholar 

  • Wang X, Wang Y, Baruj A, Eggeler G, Yue Z (2005) On the formation of martensite in front of cracks in pseudoelastic shape memory alloys. Mater Sci Eng A 394(1–2):393–398

    Google Scholar 

  • Wayman CM, Ōtsuka K (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Xiong F, Liu Y (2007) Effect of stress-induced martensitic transformation on the crack tip stress-intensity factor in ni-mn-ga shape memory alloy. Acta Mater 55(16):5621–5629

    CAS  Google Scholar 

  • Yan W, Wang CH, Zhang XP, Mai YW (2002) Effect of transformation volume contraction on the toughness of superelastic shape memory alloys. Smart Mater Struct 11(6):947

    CAS  Google Scholar 

  • Yi S, Gao S (2000) Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int J Solids Struct 37(38):5315–5327

    Google Scholar 

  • You Y, Zhang Y, Moumni Z, Anlas G, Zhang W (2017) Effect of the thermomechanical coupling on fatigue crack propagation in niti shape memory alloys. Mater Sci Eng A 685:50–56

    CAS  Google Scholar 

  • You Y, Gu X, Zhang Y, Moumni Z, Anlaş G, Zhang W (2019) Effect of thermomechanical coupling on stress-induced martensitic transformation around the crack tip of edge cracked shape memory alloy. Int J Fract 1:11

    Google Scholar 

  • Yu C, Kang G, Kan Q, Zhu Y (2015) Rate-dependent cyclic deformation of super-elastic niti shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int J Plast 72:60–90

    CAS  Google Scholar 

  • Zaki W, Moumni Z (2007) A three-dimensional model of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2455–2490

    CAS  Google Scholar 

  • Zhang X, Feng P, He Y, Yu T, Sun Q (2010) Experimental study on rate dependence of macroscopic domain and stress hysteresis in niti shape memory alloy strips. Int J Mech Sci 52(12):1660–1670

    Google Scholar 

  • Zhang Y, Zhu J, Moumni Z, Van Herpen A, Zhang W (2016) Energy-based fatigue model for shape memory alloys including thermomechanical coupling. Smart Mater Struct 25(3):035042

    Google Scholar 

  • Zhu S, Zhang Y (2007) A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Mater Struct 16(5):1696

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günay Anlaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu, F., Anlaş, G. & Moumni, Z. Effect of loading rate on fracture mechanics of NiTi SMA. Int J Fract 224, 151–165 (2020). https://doi.org/10.1007/s10704-020-00450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-020-00450-6

Keywords

Navigation