Skip to main content
Log in

Evaluation of the effectiveness of leachate biological treatment using bacteriological and parasitological monitoring

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Leachate of the uncontrolled landfill contains pollutants, which is discharged directly into the environment. The main objective of this study is to evaluate the reduction of bacteriological and parasitological risks by four biological treatments: sequencing batch reactor, anaerobic, intensive aeration and combination of the three processes. The results showed high bacteriological pollution in the raw leachate: 1.12 × 107 CFU/ml, 6.7 × 106 and 5.26 × 104 for total coliforms, faecal coliforms and Streptococci, respectively, parasites of intestinal helminths are also present: 11.86, 9.49, 9.83, 8.81 eggs/L for Enterobius vermicularis, Ascaris lumbricoides, Trichuris and Hymenolepis nana, and the values are higher than the standards for discharge into the natural environment. After sequencing batch reactor treatment, a decrease is noted in bacteria, Staphylococci, total coliforms and Streptococci with 99.63%, 97.11%, 99.93% and 94.62% abatement, respectively. This process also removes 75% of total unviable form and 80% of viable form of parasites. Intensive aeration and anaerobic treatments allowed the total elimination of total coliforms. Anaerobic processing allowed a reduction of 33.4% of unviable forms and 37% of viable forms of parasites, while a reduction of 63% of unviable and 77% of viable parasites was reported by intensive aeration. The combined treatment improves the results with abatement rates to 100% for total coliforms bacteria, and viable forms of the genus parasites: Capillaria sp., Toxocara (nematodes), Hymenolepis nana and Taenia (cestodes). A principal component analysis showed very significant correlations between all measured variables (bacteria and parasites). Combined treatment appears to be the best treatment to reduce biological risks of leachate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas AA, Jingsong G, Ping LZ, Ya PY, Al-Rekabi WS (2009) Review on land Wll leachate treatments. J Appl Sci Res 5(5):534–545

    CAS  Google Scholar 

  • Agence Française de Normalisation (AFNOR) (2001) Eaux-méthodes d’essai In: Recueil de normes françaises, 6éme édition. La défense, Paris

  • Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287:41–54. https://doi.org/10.1016/j.desal.2011.12.012

    Article  CAS  Google Scholar 

  • Ajonina C, Buzie C, Rubiandini RH, Otterpohl R (2015) Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. J Toxicol Environ Health A 78(6):381–387. https://doi.org/10.1080/15287394.2014.989626

    Article  CAS  Google Scholar 

  • Aleya L, Desmolles F, Bonnet MP, Devaux J (1994) The deterministic factors of the Microcystis aeruginosa blooms over a biyearly survey in hypereutrophic reservoir of Villerest (Roanne, France). Arch Hydrobiol Suppl 99:1–26

    Google Scholar 

  • Aziz HA, Mohd Zahari MS, Adlan MN, Hung YT (2012) Physicochemical treatment processes of landfill leachate. Handb Environ Waste Manag Air Water Pollut Control. https://doi.org/10.1142/9789814327701_0019

    Article  Google Scholar 

  • Banas J, Plaza E, Styka W, Trela J (1999) SBR technology used for advanced combined municipal and tannery wastewater treatment with high receiving water standards. Water Sci Technol 40(4–5):451–458. https://doi.org/10.1016/S0273-1223(99)00529-6

    Article  CAS  Google Scholar 

  • Bashir MJK, Isa MH, Kutty SRM, Awang ZB, Aziz HA, Mohajeri S, Farooqi IH (2009) Landfill leachate treatment by electrochemical oxidation. Waste Manag 29(9):2534–2541. https://doi.org/10.1016/j.wasman.2009.05.004

    Article  CAS  Google Scholar 

  • Baun A, Ledin A, Reitzel LA, Bjerg PL, Christensen TH (2004) Xenobiotic organic compounds in leachates from ten Danish MSW landfills—chemical analysis and toxicity tests. Water Res 38:3845–3858. https://doi.org/10.1016/j.watres.2004.07.006

    Article  CAS  Google Scholar 

  • Belle E (2008) Évolution de l’impact environnemental de lixiviats d’ordures ménagères sur les eaux superficielles et souterraines, approche hydrobiologique et hydrogéologique. Site d’étude : décharge d’Étueffont (Territoire de Belfort—France). Thèse de doctorat, Université de Franche-Comté, France, p 250

  • Ben Abbou M, Haji M (2014) Traitement des Lixiviats de la décharge non contrôlée de la ville de Taza par électrocoagulation- filtration et leur réutilisation dans la germination du Sorgho et de la luzerne [Treatments by electrocoagulation- filtration of uncontrolled Leachate discharge from the city of Taza and re-use in the germination of sorghum and alfalfa]. Int J Innov Appl Stud 9(1):355–366

    CAS  Google Scholar 

  • Bennama T, Younsi A, Derriche Z, Debab A (2011) Evolution spatio-temporelle de la physico-chimie, microbiologie et écotoxicologie des lixiviats de la décharge publique d’el-kerma (Oran, Algérie). Alger J Arid Environ AJAE 1(2):22–31

    Google Scholar 

  • Bleu P (2005) L’Eau. Méditerranée, les perspectives du Plan Bleu sur l’Environnement et le Développement, pp 71–107

  • Bogosian G, Sammons LE, Morris PJ, O’Neil JP, Heitkamp MA, Weber DB (1996) Death of the Escherichia coli K-12 strain W3110 in soil and water. Appl Environ Microbiol 62(11):4114–4120

    Article  CAS  Google Scholar 

  • Borrego AF, Romero P (1982) Study of the microbiological pollution of a Malaga littoral area II. Relationschip between faecal coliforms and faecal streptococci. VIè Journée Étude Pollutions, Cannes, France, pp 561–569

    Google Scholar 

  • Bouyakoub A, Kacha S, Ouhib R, Bellebia S, Lartiges B (2010) Traitement combiné d’un effluent textile contenant des colorants réactifs par coagulation-floculation et électroflottation. Revue des sciences de l’eau/Journal of Water Science 23(1):89–103. https://doi.org/10.7202/038927ar

    Article  CAS  Google Scholar 

  • Calli B, Mertoglu B, Roest K, Inanc B (2006) Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Biores Technol 97(4):641–647. https://doi.org/10.1016/j.biortech.2005.03.021

    Article  CAS  Google Scholar 

  • Castillo E, Vergara M, Moreno Y (2007) Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Manag 27(5):720–726. https://doi.org/10.1016/j.wasman.2006.08.003

    Article  CAS  Google Scholar 

  • Chalabi MM (1993) Performance d’élimination des œufs d’helminthes et étude de leur viabilité dans le Chenal Algal à Haut Rendement, Thèse de 3ème cycle, Fac. Sci. Marrakech

  • Cram EB (1943) The effect of various treatment processes on the survival of helminth ova and protozoan cysts in sewage. Sewage Work J 15:1119–1138

    CAS  Google Scholar 

  • Dai JG, Song QW, Zhang Y, Qin Q (2011) Directions for development of landfill leachate treatment technologies under the new standard in China. J Environ Eng Technol 1:270–274

    Google Scholar 

  • Delery L (2003) Données disponibles pour l’évaluation des risques liés aux bioaérosols émis par les installations de stockage des déchets ménagers et assimilés.Ministère de l’Ecologie et du Développement Durable. INERIS DRC 03-45955/ERSA no 91

  • Eddabra R (2011) Evaluation de la contamination bactériologique des eaux usées des stations d’épuration du grand Agadir : isolement, caractérisation moléculaire et antibiorésistance des espèces du genre vibrio. Thèse de doctorat, université Ibn Zohr, Maroc

  • Efuntoye MO, Bakare AA, Sowunmi AA (2011) Virulence factors and antibiotic resistance in Staphylococcus aureus and Clostridium perfringens from landfill leachate. Afr J Microbiol Res 5(23):3994–3997

    Article  CAS  Google Scholar 

  • El Fels L (2014) Suivi physico-chimique, microbiologique et écotoxicologique du compostage de boues de STEP mélangées à des déchets de palmier: validation de nouveaux indices de maturité. Thèse de 3eme Cycle, Institut National Polytechnique de Toulouse

  • El-Sheekh MM, Farghl AA, Galal HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27(2):401–410. https://doi.org/10.1007/s12210-015-0495-1

    Article  Google Scholar 

  • El-Zaher EHA, Abou-Zeid AM, Mostafa AA, Arif DM (2017) Industrial oil wastewater treatment by free and immobilized Aspergillus niger KX759617 and the possibility of using it in crop irrigation. Rendiconti Lincei 28(1):93–103. https://doi.org/10.1007/s12210-016-0578-7

    Article  Google Scholar 

  • Emilie F (2002) Evaluations des risques microbiens liés aux décharges d’ordures ménagères et de déchets assimilés. Institut National de l’Environnement et des Risques Industriels

  • Enzminger JD, Robertson D, Ahlert RC, Kosson DS (1987) Treatment of landfill leachates. J Hazard Mater 14(1):83–101

    Article  CAS  Google Scholar 

  • Er-Raioui H, Bouzid S, Khannous S, Zouag MA (2011) Contamination des eaux souterraines par le lixiviat des décharges publiques: cas de la nappe phréatique R’Mel (Province de Larache-Maroc Nord-Occidental). Int J Biol Chem Sci 5(3):1118–1134

    Google Scholar 

  • Escobar-Megchún SI, Nájera-Aguilar HA, González-Hilerio M, Gutiérrez-Jiménez J, Gutiérrez-Hernández RF, Rojas-Valencia MN (2014) Application of the Fenton process in the elimination of helminth eggs. J Water Health 12(4):722–726. https://doi.org/10.2166/wh.2014.092

    Article  Google Scholar 

  • Ez Zoubi Y, Merzouki M, Bennani L, El Ouali Lalami A, Benlemlih M (2010) Procédé pour la réduction de la charge polluante du lixiviat de la décharge contrôlée de la ville de Fès. Déchets, Sciences et Techniques, Revue francophone d’écologie industrielle 0(58):22–29

    Google Scholar 

  • Fang F, Abbas AA, Chen YP, Liu ZP, Gao X, Guo JS (2012) Anaerobic/aerobic/coagulation treatment of leachate from a municipal solid wastes incineration plant. Environ Technol 33(8):927–935. https://doi.org/10.1080/09593330.2011.602435

    Article  CAS  Google Scholar 

  • Fedorak P, Rogers R (1991) Assessment of the potential health risks associated with the dissemination of micro-organisms from a landfill site. Waste Manag Res 9(6):537–563. https://doi.org/10.1016/0734-242X(91)90053-A

    Article  Google Scholar 

  • Fernandes H, Viancelli A, Martin CL, Antonio RV, Costa RHR (2013) Microbial and chemical profile of a ponds system for the treatment of landfill leachate. Waste Manag 33(10):2123–2128. https://doi.org/10.1016/j.wasman.2012.10.024

    Article  CAS  Google Scholar 

  • Forgie DJL (1988) Selection of the most appropriate leachate treatment methods: part 3: a decision model for the treatment train selection. Water Qual Res J 23(2):341–355. https://doi.org/10.2166/wqrj.1988.024

    Article  CAS  Google Scholar 

  • Fox JL, Fitzgerald PR (1977) Parasitic content of municipal wastes from the Chicago area. J Parasitol 63:68–69

    Google Scholar 

  • Gamar A, Hilali FE (2017). Leachates from the wild discharge of El Hajeb City (Morocco): analytical assessment of quality microbiological and sanitary risks. In: Conference proceedings

  • Gandhimathi R, Durai NJ, Nidheesh PV, Ramesh ST, Kanmani S (2013) Use of combined coagulation-adsorption process as pretreatment of landfill leachate. Iran J Environ Health Sci Eng 10(24):1–7

    Google Scholar 

  • Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag 29(8):2227–2239

    Article  CAS  Google Scholar 

  • Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317. https://doi.org/10.1016/j.watres.2017.01.005

    Article  CAS  Google Scholar 

  • Imen S, Ismail T, Sami S, Fathi A, Khaled M, Ahmed G (2009) Characterization and anaerobic batch reactor treatment of Jebel Chakir Landfill leachate. Desalination 246(1–3):417–442. https://doi.org/10.1016/j.desal.2008.04.056

    Article  CAS  Google Scholar 

  • Jaromin-Gleń K, Kłapeć T, Łagód G, Karamon J, Malicki J, Skowrońska A, Bieganowski A (2017) Division of methods for counting helminths’ eggs and the problem of efficiency of these methods. Ann Agric Environ Med 24(1):1–7. https://doi.org/10.5604/12321966.1233891

    Article  Google Scholar 

  • Jimenez-Cisneros BE, Maya-Rendon C (2007) Helminths and sanitation. Communicating current research and educational topics and trends in applied microbiology, Formatex Research Centre, Badajoz, vol 60, p 71

  • Jirou Y, Harrouni MC, Belattar M, Fatmi M, Daoud S (2014) Traitement des lixiviats de la décharge contrôlée du Grand Agadir par aération intensive. Revue Marocaine des Sciences Agronomiques et Vétérinaires 2(2):59–69

    Google Scholar 

  • Keffala C, Harerimana C, Vasel JL (2012) Œufs d’helminthes dans les eaux usées et les boues de station d’épuration: enjeux sanitaires et intérêt du traitement par lagunage. Environ Risq Santé 11(6):511–520

    Google Scholar 

  • Kerbachi R, Belkacemi M (1994) Caractérisation et évolution des lixiviats de la décharge d’Oued-Smar à Alger. Techniques Sciences et Méthodes L’eau 11:615–618

    Google Scholar 

  • Khattabi, H (2002) Intérêt de l’étude des paramètres hydrogeologiques et hydrobiologiques pour la compréhension du fonctionnement de la station de traitement des lixiviats de la décharge d’ordures ménagères d’Etueffont (Belfort, France). Thèse Doct, Univ Comté, France

  • Khattabi H, Belle É, Servais P, Aleya L (2007) Variations spatiale et temporelle des abondances bactériennes dans quatre bassins de traitement du lixiviat de la décharge d’Étueffont (Belfort, France). CR Biol 330(5):429–438. https://doi.org/10.1016/j.crvi.2007.03.002

    Article  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfillleachate: a review. Critic Rev Environ Sci Technol 32(4):297–336. https://doi.org/10.1080/10643380290813462

    Article  CAS  Google Scholar 

  • Labioui H, Elmoualdi L, El Yachioui M, Ouhssine M (2005) Sélection de souches de bactéries lactiques antibactériennes. Bulletin société de pharmacie de bordeaux 144(3/4):237–250

    Google Scholar 

  • Layan B, Dridri A, Benaabidate L, Zemzami M (2013) Détermination des crues de projet par les aspects du débit de pointe et de l’hydro gramme de crue au niveau de la commune ain boukellal, bassin versant de l’oued Larbaà, Maroc. Eur Sci J 8(29):209–220

    Google Scholar 

  • Lei Y, Sun D, Dang Y, Chen H, Zhao Z, Zhang Y, Holmes DE (2016) Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth. Biores Technol 222:270–276

    Article  CAS  Google Scholar 

  • Lopez A, Pagano M, Volpe A, Pinto AC (2004) Fenton’s pre-treatment of mature landfill leachate. Chemosphere 54(7):1005–1010. https://doi.org/10.1016/j.chemosphere.2003.09.015

    Article  CAS  Google Scholar 

  • Mehmood MK, Adetutu E, Nedwell DB, Ball AS (2009) In situ microbial treatment of landfill leachate using aerated lagoons. Bioresour Technol 100(10):27412744. https://doi.org/10.1016/j.biortech.2008.11.031

    Article  CAS  Google Scholar 

  • Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3–4):355–366. https://doi.org/10.1016/j.jhydrol.2008.01.014

    Article  Google Scholar 

  • Moletta R (2002) La digestion anaérobie des déchets municipaux, L’Eau, l’Industrie. Les Nuisances 275:75–82

    Google Scholar 

  • Nartey VK, Hayford EK, Ametsi SK (2014) Analysis of leachates from solid waste dumpsites: a tool for predicting the quality of composts derived from landfills. Int J Environ Waste Manag 13(3):257. https://doi.org/10.1504/ijewm.2014.059934

    Article  Google Scholar 

  • Newton WL, Bennett HJ, Figgat WB (1949) Observations on the effects of various sewage treatment processes upon eggs of Taenia saginata. Am J Hyg 49(2):166–175

    CAS  Google Scholar 

  • Ong SA, Li-Ngee H, Yee-Shian W, Khairil AMP (2017) Comparative study on the biodegradation of mixed remazol dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing batch reactors. Rendiconti Lincei 28(3):497–501. https://doi.org/10.1007/s12210-017-0622-2

    Article  Google Scholar 

  • Osuolale O, Okoh A (2017) Human enteric bacteria and viruses in five wastewater treatment plants in the Eastern Cape, South Africa. J Infect Public Health 10(5):541–547. https://doi.org/10.1016/j.jiph.2016.11.012

    Article  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077

    Article  CAS  Google Scholar 

  • Sackey LNA, Meizah K (2015) Assessment of the quality of leachate at Sarbah landfill site at Weija in Accra. J Environ Chem Ecotoxicol 7(6):56–61

    Article  CAS  Google Scholar 

  • Schwartzbrod J, Bouhoum K, Baleux B (1987) Effects of lagoon treatment on helminth eggs. Water Sci Technol 19(12):369–371. https://doi.org/10.2166/wst.1987.0174

    Article  CAS  Google Scholar 

  • Sillet AA, Royer S, Coque Y, Thomas O (2001) Les lixiviats de décharges d’ordures ménagères: genèse, composition et traitement. Déchets Sci Tech 22:7–11

    Google Scholar 

  • Stott R, Jenkins T, Shabana M, May EA (1997) survey of the microbial quality of wastewaters in Ismailia, Egypt and the implications for wastewater reuse. Water Sci Technol 35(11–12):211–217. https://doi.org/10.1016/S0273-1223(97)00261-8

    Article  CAS  Google Scholar 

  • Sun H, Yang Q, Peng Y, Shi X, Wang S, Zhang S (2010) Advanced landfill leachate treatment using a two-stage UASB-SBR system at low temperature. J Environ Sci 22(4):481–485. https://doi.org/10.1016/S1001-0742(09)60133-9

    Article  CAS  Google Scholar 

  • Tahiri AA, Laziri F, Yachaoui Y, El Jaafari S, Tahiri AH (2014) Etude des polluants contenus dans les lixiviats issus de la décharge publique de la ville de Meknès (MAROC). Eur Sci J 10(35):170–186

    Google Scholar 

  • Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53(7):737–744. https://doi.org/10.1016/S0045-6535(03)00513-7

    Article  CAS  Google Scholar 

  • Trabelsi S (2011) Etudes de traitement des lixiviats des déchets urbains par les procédés d’oxydation avancée photochimiques et électrochimiques : application aux lixiviats de la décharge tunisienne “Jebel Chakir” thése de doctorat, université Paris Est et institut national des sciences appliquées Université de Carthage Tunisie. http://www.theses.fr/2011PEST1122. Accessed Sept 2018

  • Umar M, Aziz HA, Yusoff MS (2011) Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 274(1–3):278–283. https://doi.org/10.1016/j.desal.2011.02.023

    Article  CAS  Google Scholar 

  • Wei Y, Ji M, Li R, Qin F (2012) Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manag 32(3):448–455. https://doi.org/10.1016/j.wasman.2011.10.008

    Article  CAS  Google Scholar 

  • Xie B, Lv BY, Hu C, Liang SB, Tang Y, Lu J (2010) Landfill leachate pollutant removal performance of a novel biofilter packed with mixture medium. Biores Technol 101(20):7754–7760. https://doi.org/10.1016/j.biortech.2010.04.103

    Article  CAS  Google Scholar 

  • Yaacob NS, Mohamad R, Ahmad SA, Abdullah H, Ibrahim AL, Ariff AB (2016) The influence of different modes of bioreactor operation on the efficiency of phenol degradation by Rhodococcus UKMP-5M. Rendiconti Lincei 27(4):749–760. https://doi.org/10.1007/s12210-016-0567-x

    Article  Google Scholar 

  • Yahmed AB, Saidi N, Trabelsi I, Murano F, Dhaifallah T, Bousselmi L, Ghrabi A (2009) Microbial characterization during aerobic biological treatment of landfill leachate (Tunisia). Desalination 246(1–3):378–388. https://doi.org/10.1016/j.desal.2008.04.054

    Article  CAS  Google Scholar 

  • Zalaghi A (2014) Contribution à l’élaboration d’un systéme de management intégré et Traitement physique et biologique des lixiviats. Thèse de doctorat –Faculté des sciences, Université Sidi Mohammed Ben Abdallah-Fès, Maroc

  • Zalaghi A, Lamchouri F, Toufik H, Merzouki M (2014) Valorisation des matériaux naturels poreux dans le traitement des Lixiviats de la décharge publique non contrôlée de la ville de Taza (Valorization of natural porous materials in the treatment of leachate from the landfill uncontrolled city of Taza). J Mater Environ Sci 5(5):1643–1652

    CAS  Google Scholar 

  • Zaloum R, Abbott M (1997) Anaerobic pretreatment improves single sequencing batch reactor treatment of landfill leachates. Water Sci Technol 35(1):207–214

    Article  CAS  Google Scholar 

  • Zerhouni J, Filali FR, Aboulkacem A (2015) Qualité et facteurs de risque de pollution des eaux souterraines périurbaines de la ville de Sebaa Ayoune (Meknès, Maroc). Larhyss J 22:91–107

    Google Scholar 

  • Zhang D, Vahala R, Wang Y, Smets BF (2016) Microbes in biological processes for municipal landfill leachate treatment: community, function and interaction. Int Biodeterior Biodegrad 113(Supplement C):88–96. https://doi.org/10.1016/j.ibiod.2016.02.013

    Article  CAS  Google Scholar 

  • Zhang J, Wu X, Qiu D, Mao J, Zhang H (2017) Pilot-scale in situ treatment of landfill leachate using combined coagulation–flocculation, hydrolysis acidification, SBR electro-Fenton oxidation. Environ Technol. https://doi.org/10.1080/09593330.2017.1329347

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Center for Scientific and Technical Research (CNRST—Morocco) for their support as part of the Research Excellence Awards Program (No. 30USMBA2017) and all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Contributions

NM performed experimental studies, statistical analysis and manuscript preparation. FL designed the experiments, consistent guidance, analysed the data, manuscript preparation and review and edited the final version and submitted it for publication. AZ participated in the design and realization of the experimental part. HT designed the experiments, provided consistent guidance and manuscript preparation and review.

Corresponding author

Correspondence to F. Lamchouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mherzi, N., Lamchouri, F., Zalaghi, A. et al. Evaluation of the effectiveness of leachate biological treatment using bacteriological and parasitological monitoring. Int. J. Environ. Sci. Technol. 17, 3525–3540 (2020). https://doi.org/10.1007/s13762-020-02729-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02729-6

Keywords

Navigation