Skip to main content

Advertisement

Log in

Visualization of laminar–turbulent transition on rotating turbine blades

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The detection of laminar–turbulent transition in aerodynamics is very important, however, it can be extremely challenging, especially for unsteady flows or moving surfaces. To understand and control transition effects and associated friction losses on aerodynamic components, optical methods have been developed as they potentially do not disturb transition processes. Temperature Decline Thermography (TDT) was recently introduced to visualize boundary layer phenomena on surfaces exposed to flow. The technique is based on transient infrared thermography with active heating, offering high spatial resolution and precise transition detection in stationary systems. However, to improve the efficiency of modern aircraft engines, transition detection on rotating blades is of particular importance. In this study, TDT was enhanced and qualified for use on rotating blades in gas turbines. For the first time, a proof of concept is provided for flow visualization on stationary vanes and rotating blades under realistic flow conditions. Despite the limited optical access in a turbine rig, it was possible to visualize the near-wall traces of boundary layer transitions, separation and vortex systems with high spatial resolution and low measurement uncertainty. The application of TDT in turbomachinery allows for a deeper understanding of flow phenomena and enables validation and support of numerical models for the development of highly efficient gas turbines.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Behre S, Kluxen R, Jeschke P, Guendogdu Y (2015) Development of Turbulence Intensity and Integral Length-Scale in a 1.5 Stage Axial Flow Turbine. International Gas Technology Conference. Japan

  • Bons J (2005) A critical assessment of Reynolds analogy for turbine flows. J Heat Transfer 127:472–485

    Google Scholar 

  • Bross M, Fuchs T, Kähler CJ (2019) Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers. J Fluid Mech 873:287–321

    MathSciNet  MATH  Google Scholar 

  • Burkhardt, O (2004) Erprobung und anwendung von Oberflächensensoren und Sensorarrays zur Erfassung instationärer Wandschubspannungen an Schaufelprofilen. Dissertation, Technische Universität Berlin

  • Camci C, Glezer B (1997) Liquid crystal thermography on the fluid solid interface of rotating systems. J Heat Transfer 119:20–29

    Google Scholar 

  • Crawford BK, Duncan GT Jr, West DE, Saric WS (2013) Laminar-turbulent boundary layer transition imaging using ir thermography. Opt Photon J 3:233

    Google Scholar 

  • Day K, Lawless P, Fleeter S (1996) Particle image velocimetry measurements in a low speed two stage research turbine. In: 32nd joint propulsion conference and exhibit. Lake Buena Vista

  • Franke M, Kügeler E, Nürnberger D (2005) Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenströmungen. Deutscher Luft-und Raumfahrtkongress, Friedrichshafen

  • Gonzalez RC, Woods RE (2008) Digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hamdi F, Seo J, Han S (2017) Numerical study of heat and mass transfer analogy for a simulated turbine endwall. J Mech Sci Technol 31:4275–4283

    Google Scholar 

  • Han S, Goldstein R (2008) The heat/mass transfer analogy for a simulated turbine blade. Int J Heat Mass Transf 51:5209–5225

    MATH  Google Scholar 

  • Haselbach F, Nitsche W (1996) Calibration of single-surface hot films and in-line hot-film arrays in laminar or turbulent flows. Meas Sci Technol 7:1428–1438

    Google Scholar 

  • ICAO (2016) 2016 Environmental Report. https://www.icao.int/environmental-protection/Documents/ICAO%2520Environmental%2520Report%25202016.pdf . Accessed 6 Dec 2019

  • Incropera F, De Witt D (1985) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012) On the resolution limit of digital particle image velocimetry. Exp Fluids 52:1629–1639

    Google Scholar 

  • Kato M, Launder BE (1993) The modeling of turbulent flow around stationary and vibrating square cylinders. In: Proceedings of 9th symposium on turbulent shear flows, Kyoto

  • Khare R, Shukla PK (2010) Temporal stretching of laser pulses. In: DFJ coherence and ultrashort pulse laser Emission 205. IntechOpen, London

  • Kozulovic D (2007) Modellierung des Grenzschichtumschlags bei Turbomaschinenströmungen unter Berücksichtigung mehrerer Umschlagsarten. Dissertation, Ruhr-Universität Bochum

  • Lang H, Mørck T, Woisetschläger J (2002) Stereoscopic particle image velocimetry in a transonic turbine stage. Exp Fluids 32:700–709

    Google Scholar 

  • Luca L, Carlomagno G, Buresti G (1990) Boundary layer diagnostics by means of an infrared scanning radiometer. Exp Fluids 9:121–128

    Google Scholar 

  • Maltby RL (1962) Flow visualization in wind tunnels using indicators. Advisory Group for Aeronautical Research and Development, Paris

  • Mittal R, Madanan U, Goldstein R (2017) The heat/mass transfer analogy for a backward facing step. Int J Heat Mass Transf 113:411–422

    Google Scholar 

  • Mori M, Novak L, Sekavčnik M (2008) Application of IR thermography as a measuring method to study heat transfer on rotating surface. Forsch Ingenieurwes 72:1–10

    Google Scholar 

  • Nadge PM, Govardhan RN (2014) High Reynolds number flow over a backward-facing step: structure of the mean separation bubble. Exp Fluids 55:1657

    Google Scholar 

  • Niewoehner J (2017) Wirkungsgradpotential von nicht-rotationssymmetrischen Seitenwandkonturen und Schaufelneigung in einer subsonischen Axialturbine. Dissertation, RWTH Aachen

  • Niewoehner J, Poehler T, Jeschke P, Guendogdu Y (2015) Investigation of nonaxisymmetric endwall contouring and three-dimensional airfoil design in a 1.5 stage axial turbine - Part II: experimental validation. ASME J Turbomach 137:081010

    Google Scholar 

  • Nürnberger D, Greza H (2002) Numerical investigation of unsteady transitional flows in turbomachinery components based on a rans approach. Flow, Turbul Combust 69:331–353

    MATH  Google Scholar 

  • O'Malley K, Fitt AD, Jones TV, Ockendon JR, Wilmott P (1991) Models for high-Reynolds-number flow down a step. J Fluid Mech 222:139–155

    MathSciNet  MATH  Google Scholar 

  • Radespiel R, Francois DG, Hoppmann D, Klein S, Scholz P, Wawrzinek K, Knopp T (2013) Simulation of wing stall. In: 43rd AIAA fluid dynamics conference, San Diego

  • Raffel M, Merz CB, Schwermer T, Richter K (2015) Differential infrared thermography for boundary layer transition detection on pitching rotor blade models. Exp Fluids 56:30

    Google Scholar 

  • Reichstein T, Schaffarczyk A, Dollinger C, Balaresque N, Schülein E, Jauch C, Fischer A (2019) Investigation of laminar-turbulent transition on a rotating wind-turbine blade of multimegawatt class with thermography and microphone array. Energies 12:2102

    Google Scholar 

  • Restemeier M (2012) Einfluss des Schaufelreihenabstandes auf Strömung und Wirkungsgrade in einer subsonischen Axialturbine. Dissertation, RWTH Aachen

  • Restemeier M, Guendogdu Y, Jeschke P, Gier J (2011) Experimental and numerical investigation of blade row spacing effects in a 1.5 stage turbine rig under off-design operating conditions. In: Proceedings of 20th ISABE conference, Göteburg

  • Ricci R, Montelpare S (2005) A quantitative IR thermographic method to study the laminar separation bubble phenomenon. Int J Therm Sci 8:709–719

    Google Scholar 

  • Richter K, Schülein E (2014) Boundary Layer Transition Measurements on Hovering Helicopter Rotors by Infrared Thermography. Exp Fluids 55:1755

    Google Scholar 

  • Röber T, Kozulovic D, Kügeler E, Nürnberger D (2006) Appropriate turbulence modelling for turbomachinery flows using a two-equation turbulence model. New Results in Numerical and Experimental Fluid Mechanics V, Berlin

  • Schülein E (2004) Development and application of the thin oil film technique for skin friction measurements in the short-duration hypersonic wind tunnel. In: New results in numerical and experimental fluid mechanics IV Springer, München, pp 407–414

  • Terrenoire E, Hauglustaine D, Gasser T, Penanhoat O (2019) The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ Res Lett 14:084019

    Google Scholar 

  • Thiessen R, Schülein E (2019) Infrared Thermography and DIT of quadcopter rotor blades using laser heating. In: 15th international workshop on advanced infrared technology and applications, Florence

  • van Heiningen AR, Mujumdar AS, Douglas WJ (1976) On the use of hot and cold-film sensors for skin friction and heat transfer measurements in impingement flows. Lett Heat Mass Transf 3:523–528

    Google Scholar 

  • Vogel J, Eaton J (1985) Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step. J Heat Transf 107:922–929

    Google Scholar 

  • von Hoesslin S, Gruendmayer J, Zeisberger A, Kähler CJ (2019) Accessing quantitative heat transfer with temperature decline thermography. Exp Thermal Fluid Sci 108:55–60

    Google Scholar 

  • von Hoesslin S, Stadlbauer M, Gruendmayer J, Kähler CJ (2017) Temperature decline thermography for laminar–turbulent transition detection in aerodynamics. Exp Fluids 58:129

    Google Scholar 

  • Wernet M, Van Zante D, Strazisar T, John W, Prahst P (2002) 3-D Digital PIV measurements of the tip clearance flow in an axial compressor. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam

  • Woisetschläger J, Pecnik R, Göttlich E, Schennach O, Marn A, Sanz W, Heitmeir F (2008) Experimental and numerical flow visualization in a transonic turbine. J Vis 11:95–102

    Google Scholar 

  • Yorita D, Asai K, Klein C, Henne U, Schaber S (2012) Transition detection on rotating propeller blades by means of temperature sensitive paint. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville

Download references

Acknowledgements

The authors would like to thank the Institute of Jet Propulsion and Turbomachinery of the RWTH Aachen for the helpful cooperation and Matthew Bross for manuscript improvements. The research was partially funded by MTU Aero Engines AG and the AG Turbo cooperative project COOREFLEX-turbo (Funding Code: 03ET7040V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan von Hoesslin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Hoesslin, S., Gruendmayer, J., Zeisberger, A. et al. Visualization of laminar–turbulent transition on rotating turbine blades. Exp Fluids 61, 149 (2020). https://doi.org/10.1007/s00348-020-02985-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-02985-9

Navigation