Skip to main content

Advertisement

Log in

A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is well known that transport of nutrients and wastes as solute in bone fluid plays an important role in bone remodeling and damage healing. This work presents a chemo-poroelastic model for fluid and solute transport in the lacunar-canalicular network of an osteonal cortical bone under cyclic axial mechanical loading or vascular pressure. Analytical solutions are obtained for the pore fluid pressure, and fluid and solute velocities. Numerical results for fluid and calcium transport indicate that under a cyclic stress of 20 MPa, the magnitudes of the fluid and calcium velocities increase with an increase in the loading frequency for the frequency range considered (≤ 3 Hz) and peak at the inner boundary. The peak magnitude of calcium velocity reaches 18.9 μm/s for an osteon with a permeability of 1.5 × 10−19 m2 under a 3 Hz loading frequency. The magnitude of calcium velocity under a vascular pressure of 50 mmHg is found to be two orders of magnitude smaller than that under the mechanical load. These results have the potential to be important in understanding fundamental aspects of cortical bone remodeling as transport characteristics of calcium and other nutrients at the osteon scale influence bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Boston, R. C., and D. M. Nunamaker. Gait and speed as exercise components of risk factors associated with onset of fatigue injury of third metacarpal bone in 2-year-old thoroughbred racehorses. Am. J. Vet. Res. 61:602–608, 2000.

    Article  CAS  Google Scholar 

  2. Cardoso, L., S. P. Fritton, G. Gailani, M. Benalla, and S. C. Cowin. Advances in assessment of bone porosity, permeability and interstitial fluid flow. J. Biomech. 46:253–265, 2013.

    Article  Google Scholar 

  3. Cowin, S. C. Bone poroelasticity. J. Biomech. 32:218–238, 1999.

    Article  Google Scholar 

  4. Cowin, S. C., and L. Cardoso. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J. Biomech. 48:842–854, 2015.

    Article  Google Scholar 

  5. Cowin, S. C., G. Gailani, and M. Benalla. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones. Philos. Trans. R. Soc. A 367:3401–3444, 2009.

    Article  Google Scholar 

  6. Donahue, B. S., and R. F. Abercrombie. Free diffusion coefficient of ionic calcium in cytoplasm. Cell Calcium 8:437–448, 1987.

    Article  CAS  Google Scholar 

  7. Ekbote, S., and Y. Abousleiman. Porochemoelastic solution for an inclined borehole in a transversely isotropic formation. ASCE J. Eng. Mech. 132:754–763, 2006.

    Article  Google Scholar 

  8. Fan, L., S. Pei, X. L. Lu, and L. Wang. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res. 4:16032, 2016.

    Article  CAS  Google Scholar 

  9. Fritton, S. P., and S. Weinbaum. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41(1):347–374, 2009.

    Article  Google Scholar 

  10. Ganadhiepan, G., S. Miramini, M. Patel, P. Mendis, and L. Zhang. Bone fracture healing under Ilizarov fixator: Influence of fixator configuration, fracture geometry, and loading. Int. J. Numer. Methods Biomed. Eng. 35:e3199, 2019.

    Article  Google Scholar 

  11. Ghimire, S., S. Miramini, M. Richardson, P. Mendis, and L. Zhang. Effects of dynamic loading on fracture healing under different locking compression plate configurations: a finite element study. J. Mech. Behav. Biomed. Mater. 94:74–85, 2019.

    Article  Google Scholar 

  12. Goulet, G. C., N. Hamiltona, D. Cooperb, D. Coombec, D. Tran, R. Martinuzzia, and R. F. Zernicke. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone. J. Biomech. 41:2169–2175, 2008.

    Article  Google Scholar 

  13. Gururaja, S., H. J. Kim, C. C. Swan, R. A. Brand, and R. S. Lakes. Modeling deformation-induced fluid flow in cortical bone’s canalicular–lacunar system. Ann. Biomed. Eng. 33:7–25, 2005.

    Article  CAS  Google Scholar 

  14. Li, W., J. S. Gardinier, C. Price, and L. Wang. Does blood pressure enhance solute transport in the bone lacunar-canalicular system? Bone 47:353–359, 2010.

    Article  CAS  Google Scholar 

  15. Martig, S., W. Chen, P. V. Lee, and R. C. Whitton. Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 46:408–415, 2014.

    Article  CAS  Google Scholar 

  16. Nunamaker, D. M. Relationships of exercise regimen and racetrack surface to modeling/remodeling of the third metacarpal bone in two-year-old Thoroughbred racehorses. Vet. Comp. Orthop. Traumatol. 15:195–199, 2002.

    Article  Google Scholar 

  17. Nunamaker, D. M. The bucked-shin complex. In: Diagnosis and Management of Lameness in the Horse2nd, edited by M. W. Ross, and S. J. Dyson. New York: Saunders, 2011, pp. 953–960.

    Google Scholar 

  18. Nunamaker, D. M., D. M. Butterweck, and M. T. Provost. Fatigue fractures in thoroughbred racehorses: relationships with age, peak bone strain, and training. J. Orthop. Res. 8:604–611, 1990.

    Article  CAS  Google Scholar 

  19. Pereira, A. F., and S. J. Shefelbine. The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability. Biomech. Model Mechanobiol. 13:215–225, 2014.

    Article  Google Scholar 

  20. Peterson, M. C., and M. M. Riggs. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49–63, 2010.

    Article  CAS  Google Scholar 

  21. Price, C., X. Zhou, W. Li, and L. Wang. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J. Bone Miner. Res. 26(2):277–285, 2011.

    Article  CAS  Google Scholar 

  22. Robilliard, J. J., T. Pfau, and A. M. Wilson. Gait characterisation and classification in horses. J. Exp. Biol. 210:187–197, 2007.

    Article  Google Scholar 

  23. Schaffler, M. B., E. L. Radin, and D. B. Burr. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone 10:207–214, 1989.

    Article  CAS  Google Scholar 

  24. Sherwood, J. D. A model of hindered solute transport in a poroelastic shale. Proc. R. Soc. Lond. Ser. A 445:679–692, 1994.

    Article  Google Scholar 

  25. Skedros, J. S., T. R. Grunander, and M. W. Hamrick. Spatial distribution of ssteocyte lacunae in equine radii and third metacarpals: considerations for cellular communication, microdamage detection and metabolism. Cells Tissues Organs 180:215–236, 2005.

    Article  Google Scholar 

  26. Wang, B., X. Zhou, C. Price, W. Li, J. Pan, and L. Wang. Quantifying load-induced solute transport and solute-matrix interaction within the osteocyte lacunar-canalicular system. J. Bone Miner. Res. 28(5):1075–1086, 2013.

    Article  CAS  Google Scholar 

  27. Wang, L. Solute transport in the bone lacunar-canalicular system (LCS). Curr. Osteoporos. Rep. 16:32–41, 2018.

    Article  Google Scholar 

  28. Wang, L., S. C. Cowin, S. Weinbaum, and S. P. Fritton. Modeling tracer transport in an osteon under cyclic loading. Ann. Biomed. Eng. 28:1200–1209, 2000.

    Article  CAS  Google Scholar 

  29. Wehrli, F. W., and M. A. Fernández-Seara. Nuclear magnetic resonance studies of bone water. Ann. Biomed. Eng. 33:79–86, 2005.

    Article  Google Scholar 

  30. Wolff, J. The Law of Bone Remodelling. Berlin: Springer, p. 126, 1986.

    Book  Google Scholar 

  31. Zhang, D., S. Weinbaum, and S. C. Cowin. On the calculation of bone pore water pressure due to mechanical loading. Int. J. Solids Struct. 53:4981–4997, 1998.

    Article  Google Scholar 

  32. Zhou, X., J. E. Novotny, and L. Wang. Modeling fluorescence recovery after photobleaching in loaded bone: potential applications in measuring fluid and solute transport in the osteocytic lacunar-canalicular system. Ann. Biomed. Eng. 36:1961–1977, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-H. Jin.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZH., Janes, J.G. & Peterson, M.L. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone. Ann Biomed Eng 49, 299–309 (2021). https://doi.org/10.1007/s10439-020-02544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02544-7

Keywords

Navigation