Skip to main content

Advertisement

Log in

Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Loading is indispensable for the growth, development, and maintenance of joint tissues, including mandibular condylar cartilage, but excessive loading or reduced host adaptive capacity can considerably damage the temporomandibular joint (TMJ), leading to temporomandibular joint osteoarthritis (TMJ-OA). TMJ-OA, associated with other pathological conditions and aging processes, is a highly degenerative disease affecting the articular cartilage. Many treatment modalities for TMJ-OA have been developed. Traditional clinical treatment includes mainly nonsurgical options, such as occlusal splints. However, non-invasive therapy does not achieve joint tissue repair and regeneration. Growing evidence suggests that low-intensity pulsed ultrasound (LIPUS) accelerates bone fracture healing and regeneration, as well as having extraordinary effects in terms of soft tissue repair and regeneration. The latter have received much attention, and various studies have been performed to evaluate the potential role of LIPUS in tissue regeneration including that applied to articular cartilage. The present article provides an overview of the status of LIPUS stimulation used to prevent the onset and progression of TMJ-OA and enhance the tissue regeneration of mandibular condylar cartilage. The etiology and management of TMJ-OA are explained briefly, animal models of TMJ-OA are described, and the effectiveness of LIPUS on cell metabolism and tissue regeneration in the TMJ is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aigner, T., B. Kurz, N. Fukui, and L. Sandell. Roles of chondrocytes in the pathogenesis of osteoarthritis. Curr. Opin. Rheumatol. 14:578–584, 2002.

    CAS  PubMed  Google Scholar 

  2. Al-Daghreer, S., M. Doschak, A. J. Sloan, P. W. Major, G. Heo, C. Scurtescu, Y. Y. Tsui, and T. El-Bialy. Short-term effect of low-intensity pulsed ultrasound on an ex-vivo 3-d tooth culture. Ultrasound Med. Biol. 39:1066–1074, 2013.

    PubMed  Google Scholar 

  3. Arnett, G. W., S. B. Milam, and L. Gottesman. Progressive mandibular retrusion-idiopathic condylar resorption Part I. Am. J. Orthod. Dentofacial Orthop. 110:8–15, 1996.

    CAS  PubMed  Google Scholar 

  4. Baltzer, A. W., M. S. Ostapczuk, and D. Stosch. Positive effects of low level laser therapy (LLLT) on Bouchard’s and Heberden’s osteoarthritis. Lasers Surg. Med. 48:498–504, 2016.

    PubMed  Google Scholar 

  5. Brooks, P. M. The burden of musculoskeletal disease–a global perspective. Clin. Rheumatol. 25:778–781, 2006.

    PubMed  Google Scholar 

  6. Brown, G. A. AAOS clinical practice guideline: treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J. Am. Acad. Orthop. Surg. 21:577–579, 2013.

    PubMed  Google Scholar 

  7. Chapman, I. V., N. A. MacNally, and S. Tucker. Ultrasound-induced changes in rates of influx and efflux of potassium ions in rat thymocytes in vitro. Ultrasound Med. Biol. 6:47–58, 1980.

    CAS  PubMed  Google Scholar 

  8. Chen, J., A. Utreja, Z. Kalajzic, T. Sobue, D. Rowe, and S. Wadhwa. Isolation and characterization of murine mandibular condylar cartilage cell populations. Cells Tissues Organ. 195:232–243, 2012.

    CAS  Google Scholar 

  9. Chen, Y. J., C. J. Wang, K. D. Yang, P. R. Chang, H. C. Huang, Y. T. Huang, Y. C. Sun, and F. S. Wang. Pertussis toxin-sensitive Galphai protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts. FEBS. Lett. 554:154–158, 2003.

    CAS  PubMed  Google Scholar 

  10. Claes, L., and B. Willie. The enhancement of bone regeneration by ultrasound. Prog. Biophys. Mol. Biol. 93:384–398, 2007.

    PubMed  Google Scholar 

  11. Crossman, J., N. Alzaheri, M. N. Abdallah, F. Tamimi, P. Flood, H. Alhadainy, and T. El-Bialy. Low intensity pulsed ultrasound increases mandibular height and Col-II and VEGF expression in arthritic mice. Arch. Oral Biol. 104:112–118, 2019.

    CAS  PubMed  Google Scholar 

  12. De Bari, C., F. Dell’Accio, P. Tylzanowski, and F. P. Luyten. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928–1942, 2001.

    PubMed  Google Scholar 

  13. de Laat, A., K. Stappaerts, and S. Papy. Counseling and physical therapy as treatment for myofascial pain of the masticatory system. J. Orofac. Pain 17:42–49, 2003.

    PubMed  Google Scholar 

  14. Ding, F., J. Wang, G. Zhu, H. Zhao, G. Wu, and L. Chen. Osteopontin stimulates matrix metalloproteinase expression through the nuclear factor-κB signaling pathway in rat temporomandibular joint and condylar chondrocytes. Am. J. Transl. Res. 9:316–329, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Bialy, T., I. El-Shamy, and T. M. Graber. Growth modification of the rabbit mandible using therapeutic ultrasound: is it possible to enhance functional appliance results? Angle Orthod. 73:631–639, 2003.

    PubMed  Google Scholar 

  16. Embree, M., M. Ono, T. Kilts, D. Walker, J. Langguth, J. Mao, Y. Bi, Y. J. L. Barth, and M. Young. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J. Dent. Res. 90:1331–1338, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandes, G., M. K. van Selms, D. A. Gonçalves, F. Lobbezoo, and C. M. Camparis. Factors associated with temporomandibular disorders pain in adolescents. J. Oral Rehabil. 42:113–119, 2015.

    CAS  PubMed  Google Scholar 

  18. Forssell, H., and E. Kalso. Application of principles of evidence-based medicine to occlusal treatment for temporomandibular disorders: are there lessons to be learned? J. Orofac. Pain 18:9–22, 2004.

    PubMed  Google Scholar 

  19. Fujisawa, T., T. Kuboki, T. Kasai, W. Sonoyama, S. Kojima, J. Uehara, C. Komori, H. Yatani, T. Hattori, and M. Takigawa. A repetitive, steady mouth opening induced an osteoarthritis-like lesion in the rabbit temporomandibular joint. J. Dent. Res. 82:731–735, 2003.

    CAS  PubMed  Google Scholar 

  20. Fujita, M., M. Sato-Shigeta, H. Mori, A. Iwasa, N. Kawai, A. H. Hassan, and E. Tanaka. Protective effects of low-intensity pulsed ultrasound on mandibular condylar cartilage exposed to mechanical overloading. Ultrasound Med. Biol. 45:944–953, 2019.

    PubMed  Google Scholar 

  21. Ghassemi-Nejad, S., T. Kobezda, T. A. Rauch, C. Matesz, T. T. Glant, and K. Mikecz. Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis. Osteoarthritis Cart. 19:458–465, 2011.

    CAS  Google Scholar 

  22. Gray, R. G., and N. L. Gottlieb. Intra-articular corticosteroids: an updated assessment. Clin. Orthop. Relat. Res. 177:235–263, 1983.

    Google Scholar 

  23. Hawkins, A., L. G. Mercuri, and M. Miloro. Are rib grafts still used for temporomandibular joint reconstruction? J. Oral Maxillofac. Surg. 78:195–202, 2010.

    Google Scholar 

  24. He, D., Y. An, Y. Li, J. Wang, G. Wu, L. Chen, and G. Zhu. RNA sequencing reveals target genes of temporomandibular joint osteoarthritis in rats after the treatment of low-intensity pulsed ultrasound. Gene 672:126–136, 2018.

    CAS  PubMed  Google Scholar 

  25. Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. Am. 76:26–34, 1994.

    CAS  PubMed  Google Scholar 

  26. Huang, X., R. Das, A. Patel, and T. D. Nguyen. Physical stimulations for bone and cartilage regeneration. Regen. Eng. Transl. Med. 4:216–237, 2018.

    PubMed  PubMed Central  Google Scholar 

  27. Ito, A., T. Aoyama, S. Yamaguchi, X. Zhang, H. Akiyama, and H. Kuroki. Low-intensity pulsed ultrasound inhibits messenger RNA expression of matrix metalloproteinase-13 induced by interleukin-1β in chondrocytes in an intensity-dependent manner. Ultrasound Med. Biol. 38:1726–1733, 2012.

    PubMed  Google Scholar 

  28. Iwabuchi, Y., K. Tanimoto, Y. Tanne, T. Inubushi, T. Kamiya, R. Kunimatsu, N. Hirose, T. Mitsuyoshi, S. Su, E. Tanaka, and K. Tanne. Effects of low-intensity pulsed ultrasound on the expression of cyclooxygenase-2 in mandibular condylar chondrocytes. J. Oral Fac. Pain Headache 28:261–268, 2014.

    Google Scholar 

  29. Izawa, T., H. Mori, T. Shinohara, A. Mino-Oka, I. R. Hutami, A. Iwasa, and E. Tanaka. Rebamipide attenuates mandibular condylar degeneration in a murine model of TMJ-OA by mediating a chondroprotective effect and by downregulating RANKL-mediated osteoclastogenesis. PLoS ONE 11:e0154107, 2016.

    PubMed  PubMed Central  Google Scholar 

  30. Jia, L., Y. Wang, J. Chen, and W. Chen. Efficacy of focused low-intensity pulsed ultrasound therapy for the management of knee osteoarthritis: a randomized, double blind placebo-controlled trial. Sci. Rep. 6:35453, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiao, K., M. Zhang, L. Niu, S. Yu, G. Zhen, L. Xian, B. Yu, K. Yang, P. Liu, X. Cao, and M. Wang. Overexpressed TGF-β in subchondral bone leads to mandibular condyle degradation. J. Dent. Res. 93:140–147, 2014.

    CAS  PubMed  Google Scholar 

  32. Jones, B. A., and M. Pei. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng. B Rev. 18:301–311, 2012.

    CAS  Google Scholar 

  33. Kanaguchi-Arita, A., I. Yonemitsu, Y. Ikeda, M. Miyazaki, and T. Ono. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats. Oral Dis. 24:600–610, 2018.

    CAS  PubMed  Google Scholar 

  34. Kardel, R., A. K. Ulfgren, F. P. Reinholt, and A. Holmlund. Inflammatory cell and cytokine patterns in patients with painful clicking and osteoarthritis in the temporomandibular joint. Int. J. Oral Maxillofac. Surg. 32:390–396, 2003.

    CAS  PubMed  Google Scholar 

  35. Kaur, H., H. Uludağ, and T. El-Bialy. Effect of nonviral plasmid delivered basic fibroblast growth factor and low intensity pulsed ultrasound on mandibular condylar growth: a preliminary study. Biomed. Res. Int. 2014:426710, 2014.

    PubMed  PubMed Central  Google Scholar 

  36. Kawai, Y., E. Kubota, and E. Okabe. Reactive oxygen species participation in experimentally induced arthritis of the temporomandibular joint in rats. J. Dent. Res. 79:1489–1495, 2000.

    CAS  PubMed  Google Scholar 

  37. Kawai, N., E. Tanaka, G. E. Langenbach, T. van Wessel, R. Sano, T. M. G. J. van Eijden, and K. Tanne. Jaw-muscle activity changes after the induction of osteoarthrosis in the temporomandibular joint by mechanical loading. J. Orofac. Pain 22:153–162, 2008.

    PubMed  Google Scholar 

  38. Khan, Y., and C. T. Laurencin. Fracture repair with ultrasound: clinical and cell-based evaluation. J. Bone Joint Surg. Am. 90:S138–144, 2008.

    Google Scholar 

  39. Kojima, F., H. Naraba, S. Miyamoto, M. Beppu, H. Aoki, and S. Kawai. Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. Arthritis Res. Ther. 6:R355–365, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kokubu, T., N. Matsui, H. Fujioka, M. Tsunoda, and K. Mizuno. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem. Biophys. Res. Commun. 256:284–287, 1999.

    CAS  PubMed  Google Scholar 

  41. Koyama, N., Y. Okubo, K. Nakao, K. Osawa, K. Fujimura, and K. Bessho. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci. 89:741–747, 2011.

    CAS  PubMed  Google Scholar 

  42. Kubota, E., T. Kubota, J. Matsumoto, T. Shibata, and K. I. Murakami. Synovial fluid cytokines and proteinases as markers of temporomandibular joint disease. J. Oral Maxillofac. Surg. 56:192–198, 1998.

    CAS  PubMed  Google Scholar 

  43. Kuroda, S., K. Tanimoto, T. Izawa, S. Fujihara, J. H. Koolstra, and E. Tanaka. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthritis Cart. 17:1408–1415, 2009.

    CAS  Google Scholar 

  44. Kusuyama, J., K. Bandow, M. Shamoto, K. Kakimoto, T. Ohnishi, and T. Matsuguchi. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J. Biol. Chem. 289:10330–10344, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuttila, M., Y. LeBell, E. Savolainen-Niemi, S. Kuttila, and P. Alanen. Efficiency of occlusal appliance therapy in secondary otalgia and temporomandibular disorders. Acta Odontol. Scand. 60:248–254, 2002.

    PubMed  Google Scholar 

  46. Leonardi, R., L. LoMuzio, G. Bernasconi, C. Caltabiano, C. Piacentini, and M. Caltabiano. Expression of vascular endothelial growth factor in human dysfunctional temporomandibular joint disc. Arch. Oral Biol. 48:185–192, 2003.

    CAS  PubMed  Google Scholar 

  47. Liang, C., T. Yang, G. Wu, J. Li, and W. Geng. Therapeutic effect of low-intensity pulsed ultrasound on temporomandibular joint injury induced by chronic sleep deprivation in rats. Am. J. Transl. Res. 11:3328–3340, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y. D., L. F. Liao, H. Y. Zhang, L. Lu, K. Jiao, M. Zhang, J. J. He, Y. P. Wu, D. Chen, and M. Q. Wang. Reducing dietary loading decreases mouse temporomandibular joint degradation induced by anterior crossbite prosthesis. Osteoarthritis Cart. 22:302–312, 2014.

    Google Scholar 

  49. Ma, C., G. Wu, Z. Wang, P. Wang, L. Wu, G. Zhu, and H. Zhao. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats. PLoS ONE 9:e114988, 2014.

    Google Scholar 

  50. Mansjur, K. Q., S. Kuroda, T. Izawa, Y. Maeda, M. Sato, K. Watanabe, S. Horiuchi, and E. Tanaka. The effectiveness of human parathyroid hormone and low-intensity pulsed ultrasound on the fracture healing in osteoporotic bones. Ann. Biomed. Eng. 44:2480–2488, 2016.

    PubMed  Google Scholar 

  51. McAlindon, T. E., R. R. Bannuru, M. C. Sullivan, N. K. Arden, F. Berenbaum, S. M. Bierma-Zeinstra, G. A. Hawker, Y. Henrotin, D. J. Hunter, H. Kawaguchi, K. Kwoh, S. Lohmander, F. Rannou, E. M. Roos, and M. Underwood. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cart. 22:363–388, 2014.

    CAS  Google Scholar 

  52. Mercuri, L. G. Surgical management of TMJ arthritis. In: TMDs, an evidence-based approach to diagnosis and treatment, edited by D. M. Laskin, C. S. Greene, and W. L. Hylander. Chicago: Quintessence, 2006, pp. 455–468.

    Google Scholar 

  53. Mercuri, L. G. Costochondral graft versus total alloplastic joint for temporomandibular joint reconstruction. Oral Maxillofac. Surg. Clin. North Am. 30:335–342, 2018.

    PubMed  Google Scholar 

  54. Milam, S. B., G. Zardeneta, and J. P. Schmitz. Oxidative stress and degenerative temporomandibular joint disease: a proposed hypothesis. J. Oral Maxillofac. Surg. 56:214–223, 1998.

    CAS  PubMed  Google Scholar 

  55. Miller, L. E., M. Fredericson, and R. D. Altman. Hyaluronic acid injections or oral nonsteroidal anti-inflammatory drugs for knee osteoarthritis: systematic review and meta-analysis of randomized trials. Orthop. J. Sports Med. 8:2325967119897909, 2020.

    PubMed  PubMed Central  Google Scholar 

  56. Mino-Oka, A., T. Izawa, T. Shinohara, H. Mori, A. Yasue, S. Tomita, and E. Tanaka. The role of hypoxia-induced transcriptopn factor-1α on the development of temporomandibular joint osteoarthritis. Arch. Oral Biol. 73:274–281, 2017.

    CAS  PubMed  Google Scholar 

  57. Mittal, N., M. Goyal, D. Sardana, and J. S. Dua. Outcomes of surgical management of TMJ ankylosis: a systematic review and meta-analysis. J. Craniomaxillofac. Surg. 47:1120–1133, 2019.

    PubMed  Google Scholar 

  58. Mummolo, S., A. Nota, S. Tecco, S. Caruso, E. Marchetti, G. Marzo, and T. Cutilli. Ultra-low-frequency transcutaneous electric nerve stimulation (ULF-TENS) in subjects with craniofacial pain: a retrospective study. Cranio 8:1–6, 2018.

    Google Scholar 

  59. Nagao, M., N. Tanabe, S. Manaka, M. Naito, J. Sekino, T. Takayama, T. Kawato, G. Torigoe, S. Kato, N. Tsukune, M. Maeno, N. Suzuki, and S. Sato. LIPUS suppressed LPS-induced IL-1α through the inhibition of NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells. J. Cell Physiol. 232:3337–3346, 2017.

    CAS  PubMed  Google Scholar 

  60. Nagata, K., T. Nakamura, S. Fujihara, and E. Tanaka. Ultrasound modulates the inflammatory response and promotes muscle regeneration in injured muscles. Ann. Biomed. Eng. 41:1095–1105, 2013.

    PubMed  Google Scholar 

  61. Nakamura, T., S. Fujihara, K. Yamamoto-Nagata, T. Katsura, T. Inubushi, and E. Tanaka. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann. Biomed. Eng. 39:2964–2971, 2011.

    PubMed  Google Scholar 

  62. Nishida, T., S. Kubota, E. Aoyama, N. Yamanaka, K. M. Lyons, and M. Takigawa. Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of CCN family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: mechanism underlying this stimulation. Osteoarthritis Cart. 25:759–769, 2017.

    CAS  Google Scholar 

  63. Nitzan, D. W. The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J. Oral Maxillofac. Surg. 59:36–45, 2001.

    CAS  PubMed  Google Scholar 

  64. Nitzan, D. W., and A. Price. The use of arthrocentesis for the treatment of osteoarthritic temporomandibular joints. J. Oral Maxillofac. Surg. 59:1154–1159, 2001.

    CAS  PubMed  Google Scholar 

  65. Ogasawara, N., F. Kano, N. Hashimoto, H. Mori, Y. Liu, L. Xia, T. Sakamaki, H. Hibi, T. Iwamoto, E. Tanaka, and A. Yamamoto. Factor secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis Cart: In press, 2020.

    Google Scholar 

  66. Ohashi, N., A. G. Robling, D. B. Burr, and C. H. Turner. The effects of dynamic axial loading on the rat growth plate. J. Bone Miner. Res. 17:284–292, 2002.

    PubMed  Google Scholar 

  67. Oyonarte, R., D. Becerra, J. Díaz-Zúñiga, V. Rojas, and F. Carrion. Morphological effects of mesenchymal stem cells and pulsed ultrasound on condylar growth in rats: a pilot study. Aust. Orthod. J. 29:3–12, 2013.

    PubMed  Google Scholar 

  68. Oyonarte, R., M. Zárate, and F. Rodriguez. Low-intensity pulsed ultrasound stimulation of condylar growth in rats. Angle Orthod. 79:964–970, 2009.

    PubMed  Google Scholar 

  69. Padilla, F., R. Puts, L. Vico, and K. Raum. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics 54:1125–1145, 2014.

    CAS  PubMed  Google Scholar 

  70. Ren, L., Z. Yang, J. Song, Z. Wang, F. Deng, and W. Li. Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells. Ultrasonics 53:686–690, 2013.

    CAS  PubMed  Google Scholar 

  71. Saito, M., K. Fujii, T. Tanaka, and S. Soshi. Effect of low and high intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif. Tissue Int. 75:384–395, 2004.

    CAS  PubMed  Google Scholar 

  72. Sakata, S., R. Kunimatsu, Y. Tsuka, A. Nakatani, T. Hiraki, H. Gunji, N. Hirose, M. Yanoshita, N. A. R. Putranti, and K. Tanimoto. High-frequency near-infrared diode laser irradiation attenuates il-1β-induced expression of inflammatory cytokines and matrix metalloproteinases in human primary chondrocytes. J. Clin. Med. 9:3, 2020.

    Google Scholar 

  73. Sato, M., K. Nagata, S. Kuroda, S. Horiuchi, T. Nakamura, K. Mansjur, T. Inubushi, and E. Tanaka. Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann. Biomed. Eng. 42:2156–2163, 2014.

    PubMed  Google Scholar 

  74. Schmitter, M., M. Essig, V. Seneadza, Z. Balke, J. Schröder, and P. Rammelsberg. Prevalence of clinical and radiographic signs of osteoarthrosis of the temporomandibular joint in an older persons’ community. Dentomaxillofac. Radiol. 39:231–234, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sekino, J., M. Nagao, S. Kato, M. Sakai, K. Abe, E. Nakayama, M. Sato, Y. Nagashima, H. Hino, N. Tanabe, T. Kawato, M. Maeno, N. Suzuki, and K. Ueda. Low-intensity pulsed ultrasound induces cartilage matrix synthesis and reduced MMP13 expression in chondrocytes. Biochem. Biophys. Res. Commun. 506:290–297, 2018.

    CAS  PubMed  Google Scholar 

  76. Sellam, J., and F. Berenbaum. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6:625–635, 2010.

    CAS  PubMed  Google Scholar 

  77. Sharma, L., D. Kapoor, and S. Issa. Epidemiology of osteoarthritis: an update. Curr. Opin. Rheumatol. 18:147–156, 2006.

    PubMed  Google Scholar 

  78. Shinohara, T., T. Izawa, A. Mino-Oka, H. Mori, A. Iwasa, T. Inubushi, Y. Yamaguchi, and E. Tanaka. Hyaluronan metabolism in overloaded temporomandibular joint. J. Oral Rehabil. 43:921–928, 2016.

    CAS  PubMed  Google Scholar 

  79. Shiraishi, R., C. Masaki, A. Toshinaga, T. Okinaga, T. Nishihara, N. Yamanaka, T. Nakamoto, and R. Hosokawa. The effects of low-intensity pulsed ultrasound exposure on gingival cells. J. Periodontol. 82:1498–1503, 2011.

    CAS  PubMed  Google Scholar 

  80. Shirakura, M., K. Tanimoto, H. Eguchi, M. Miyauchi, H. Nakamura, K. Hiyama, K. Tanimoto, E. Tanaka, T. Takata, and K. Tanne. Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis. Biochem. Biophys. Res. Commun. 393:800–805, 2010.

    CAS  PubMed  Google Scholar 

  81. Shlopov, B. V., W. R. Lie, C. L. Mainardi, A. A. Cole, S. Chubinskaya, and K. A. Hasty. Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum. 40:2065–2074, 1997.

    CAS  PubMed  Google Scholar 

  82. Sobue, T., W. C. Yeh, A. Chhibber, A. Utreja, V. Diaz-Doran, D. Adams, Z. Kalajzic, J. Chen, and S. Wadhwa. Murine TMJ loading causes increased proliferation and chondrocyte maturation. J. Dent. Res. 90:512–516, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Takahashi, T., H. Homma, H. Nagai, H. Seki, T. Kondoh, Y. Yamazaki, and M. Fukuda. Specific expression of inducible nitric oxide synthase in the synovium of the diseased temporomandibular joint. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95:174–181, 2003.

    PubMed  Google Scholar 

  84. Takakura, Y., N. Matsui, S. Yoshiya, H. Fujioka, H. Muratsu, M. Tsunoda, and M. Kurosaka. Low-intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats. J. Ultrasound Med. 21:283–288, 2002.

    PubMed  Google Scholar 

  85. Takeuchi, R., A. Ryo, N. Komitsu, Y. Mikuni-Takagaki, A. Fukui, Y. Takagi, T. Shiraishi, S. Morishita, Y. Yamazaki, K. Kumagai, I. Aoki, and T. Saito. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res. Ther. 10:R77, 2008.

    PubMed  PubMed Central  Google Scholar 

  86. Tanabe, N., A. Yasue, and E. Tanaka. Mechanisms of LIPUS on dentofacial bioengineering. In: Therapeutic ultrasound in dentistry—applications for dentofacial repair, regeneration, and tissue engineering, edited by T. El-Bialy, E. Tanaka, and D. Aizenbud. Gewerbestrasse: Springer, 2018.

    Google Scholar 

  87. Tanaka, E., J. Aoyama, M. Miyauchi, T. Takata, K. Hanaoka, T. Iwabe, and K. Tanne. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem. Cell Biol. 123:275–281, 2005.

    CAS  PubMed  Google Scholar 

  88. Tanaka, E., M. S. Detamore, and L. G. Mercuri. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J. Dent. Res. 87:296–307, 2008.

    CAS  PubMed  Google Scholar 

  89. Tanaka, E., S. Kuroda, S. Horiuchi, A. Tabata, and T. El-Bialy. Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann. Biomed. Eng. 43:871–886, 2015.

    PubMed  Google Scholar 

  90. Uddin, S. M., B. Richbourgh, Y. Ding, A. Hettinghouse, D. E. Komatsu, Y. X. Qin, and C. J. Liu. Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cart. 24:1989–1998, 2016.

    CAS  Google Scholar 

  91. Vapniarsky, N., L. W. Huwe, B. Arzi, M. K. Houghton, M. E. Wong, J. W. Wilson, D. C. Hatcher, J. C. Hu, and K. A. Athanasiou. Tissue engineering toward temporomandibular joint disc regeneration. Sci. Transl. Med. 10:446, 2018.

    Google Scholar 

  92. Wadhwa, S., M. C. Embree, T. Kilts, M. F. Young, and L. G. Ameye. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Osteoarthritis Cart. 13:817–827, 2005.

    CAS  Google Scholar 

  93. Wang, Y., L. Jiang, T. Xu, Z. Su, X. Guo, J. Tu, D. Zhang, W. Sun, and X. Kong. p38 MAPK signaling is a key mediator for low-intensity pulsed ultrasound (LIPUS) in cultured human omental adipose-derived mesenchymal stem cells. Am. J. Transl. Res. 11:418–429, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, X. D., X. X. Kou, D. Q. He, M. M. Zeng, Z. Meng, R. Y. Bi, Y. Liu, J. N. Zhang, Y. H. Gan, and Y. H. Zhou. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate. PLoS ONE 7:e45036, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, X. D., J. N. Zhang, Y. H. Gan, and Y. H. Zhou. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J. Dent. Res. 94:666–673, 2015.

    CAS  PubMed  Google Scholar 

  96. Warden, S. J., K. L. Bennell, J. M. McMeeken, and J. D. Wark. Acceleration of fresh fracture repair using the sonic accelerated fracture healing system (SAFHS): a review. Calcif. Tissue Int. 66:157–163, 2000.

    CAS  PubMed  Google Scholar 

  97. Wong, M., M. Siegrist, and K. Goodwin. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685–693, 2003.

    CAS  PubMed  Google Scholar 

  98. Wu, Y., C. Kadota-Watanabe, T. Ogawa, and K. Moriyama. Combination of estrogen deficiency and excessive mechanical stress aggravates temporomandibular joint osteoarthritis in vivo. Arch. Oral Biol. 102:39–46, 2019.

    CAS  PubMed  Google Scholar 

  99. Xie, L. K., K. Wangrangsimakul, S. Suttapreyasri, L. K. Cheung, and T. Nuntanaranont. A preliminary study of the effect of low intensity pulsed ultrasound on new bone formation during mandibular distraction osteogenesis in rabbits. Int. J. Oral Maxillofac. Surg. 40:730–736, 2011.

    CAS  PubMed  Google Scholar 

  100. Xu, L., I. Polur, C. Lim, J. M. Servais, J. Dobeck, Y. Li, and B. R. Olsen. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthritis Cart. 17:917–922, 2009.

    CAS  Google Scholar 

  101. Yi, X., L. Wu, J. Liu, Y. X. Qin, B. Li, and Q. Zhou. Low-intensity pulsed ultrasound protects subchondral bone in rabbit temporomandibular joint osteoarthritis by suppressing TGF-β1/Smad3 pathway. J. Orthop. Res. 5:2, 2020.

    Google Scholar 

  102. Yoshida, H., S. Fujita, M. Nishida, and T. Iizuka. Immunohistochemical distribution of lymph capillaries and blood capillaries in the synovial membrane in cases of internal derangement of the temporomandibular joint. J. Oral Pathol. Med. 26:356–361, 1997.

    CAS  PubMed  Google Scholar 

  103. Zhang, J., K. Jiao, M. Zhang, T. Zhou, X. D. Liu, S. B. Yu, L. Lu, L. Jing, T. Yang, Y. Zhang, D. Chen, and M. Q. Wang. Occlusal effects on longitudinal bone alterations of the temporomandibular joint. J. Dent. Res. 92:253–259, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, Y., and J. M. Jordan. Epidemiology of osteoarthritis. Clin. Geriat. Med. 26:355–369, 2010.

    Google Scholar 

  105. Zhang, W., R. W. Moskowitz, G. Nuki, S. Abramson, R. D. Altman, N. Arden, S. Bierma-Zeinstra, K. D. Brandt, P. Croft, M. Doherty, M. Dougados, M. Hochberg, D. J. Hunter, K. Kwoh, L. S. Lohmander, and P. Tugwell. OARSI recommendations for the management of hip and knee osteoarthritis, part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cart. 15:981–1000, 2007.

    CAS  Google Scholar 

  106. Zhang, W., R. W. Moskowitz, G. Nuki, S. Abramson, R. D. Altman, N. Arden, S. Bierma-Zeinstra, K. D. Brandt, P. Croft, M. Doherty, M. Dougados, M. Hochberg, D. J. Hunter, K. Kwoh, L. S. Lohmander, and P. Tugwell. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cart. 16:137–162, 2008.

    CAS  Google Scholar 

  107. Zhang, W., G. Nuki, R. W. Moskowitz, S. Abramson, R. D. Altman, N. K. Arden, S. Bierma-Zeinstra, K. D. Brandt, P. Croft, M. Doherty, M. Dougados, M. Hochberg, D. J. Hunter, K. Kwoh, L. S. Lohmander, and P. Tugwell. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cart. 18:476–499, 2010.

    CAS  Google Scholar 

  108. Zhou, H. Y., Q. Li, J. X. Wang, Y. J. Xie, S. Q. Wang, L. Lei, Y. Q. Gao, M. M. Huang, Y. Hu, F. Y. Xu, and C. Zhang. Low-intensity pulsed ultrasound repair in mandibular condylar cartilage injury rabbit model. Arch. Oral Biol. 104:60–66, 2014.

    Google Scholar 

  109. Zhou, X. Y., X. X. Zhang, G. Y. Yu, Z. C. Zhang, F. Wang, Y. L. Yang, M. Li, and X. Z. Wei. Effects of low-intensity pulsed ultrasound on knee osteoarthritis: a meta-analysis of randomized clinical trials. Biomed. Res. Int. 2018:7469197, 2018.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Tsukasa Kurahashi and Hiroto Hayashi for providing the information of ultrasound devices.

Author Contributions

Conceptualization, ET, YL, and AY; Funding acquisition, ET; Literature retrieval, YL, LX, NO, TS, FK, NH, and XF; Writing—review & editing, ET, YL, and AY.

Funding

This research was supported by Grants-in-Aid 26293436 (ET) for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflict of interest

All authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, E., Liu, Y., Xia, L. et al. Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann Biomed Eng 48, 2158–2170 (2020). https://doi.org/10.1007/s10439-020-02540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02540-x

Keywords

Navigation