Skip to main content
Log in

Simple non-extensive sparsification of the hierarchical matrices

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the matrices approximated in \({\mathscr{H}}^{2}\) format. The direct solution, as well as the preconditioning of systems with such matrices, is a challenging problem. We propose a non-extensive sparse factorization of the \({\mathscr{H}}^{2}\) matrix that allows to substitute direct \({\mathscr{H}}^{2}\) solution with the solution of the system with an equivalent sparse matrix of the same size. The sparse factorization is constructed of parameters of the \({\mathscr{H}}^{2}\) matrix. In the numerical experiments, we show the consistency of this approach in comparison with the other approximate block low-rank hierarchical solvers, such as HODLR [3], H2Lib [5], and IFMM [11].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambikasaran, S., Darve, E.: An \({\mathscr{O}}(n\log n)\) fast direct solver for partial hierarchically semi-separable matrices. J. Sci. Comput. 57 (3), 477–501 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1309.1773 (2014)

  3. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., O’Neil, M.: Fast direct methods for gaussian processes. IEEE T Pattern Anal. 38 (2), 252–265 (2016)

    Google Scholar 

  4. Bebendorf, M.: Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3), 225–247 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Börm, S.: \({\mathscr{H}}\)2lib package. http://www.h2lib.org/

  6. Börm, S.: Efficient numerical methods for non-local operators: \({\mathscr{H}}^{2}\)-matrix compression, algorithms and analysis, vol. 14. European Mathematical Society (2010)

  7. Börm, S.: \({\mathscr{H}}^{2}\)-matrix compression. In: New Developments in the Visualization and Processing of Tensor Fields, pp. 339–362. Springer (2012)

  8. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27(5), 405–422 (2003). https://doi.org/10.1016/S0955-7997(02)00152-2

    MATH  Google Scholar 

  9. Börm, S., Reimer, K.: Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates. Comput. Vis. Sci. 16(6), 247–258 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for HSS representations via sparse matrices. SIAM J. Matrix Anal. A. 29(1), 67–81 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Coulier, P., Pouransari, H., Darve, E.: The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems. arXiv:1508.01835 (2015)

  12. Davis, T. A., Hager, W. W.: Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM T Math. Softw. 35(4), 27 (2009)

    MathSciNet  Google Scholar 

  13. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Greengard, L., Rokhlin, V.: The Rapid Evaluation of Potential Fields in Three Dimensions. Springer, Berlin (1988)

  15. Hackbusch, W.: A sparse matrix arithmetic based on \({\mathscr{H}}\)-matrices. Part I: introduction to \({\mathscr{H}}\)-matrices. Computing 62(2), 89–108 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Hackbusch, W., Khoromskij, B., Sauter, S.: On \({\mathscr{H}}^{2}\)-Matrices. In: Bungartz, H.-J. et al. (eds.) Lectures on Applied Mathematics, pp 9–30. Springer, Berlin (2000)

  17. Hackbusch, W., Khoromskij, B. N.: A sparse h-matrix arithmetic. Computing 64(1), 21–47 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Hackbusch, W., Khoromskij, B. N., Kriemann, R.: Hierarchical matrices based on a weak admissibility criterion. Computing 73(3), 207–243 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Ma, M., Jiao, D.: Accuracy directly controlled fast direct solutions of general \({\mathscr{H}},^{2}\)-matrices and its application to electrically large integral-equation-based electromagnetic analysis. arXiv:1703.06155 (2017)

  20. Martinsson, P. G.: A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix. SIAM J. Matrix Anal. A. 32(4), 1251–1274 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Martinsson, P. G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205(1), 1–23 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Mikhalev, A. Y., Oseledets, I. V.: Iterative representing set selection for nested cross approximation. Numer. Linear Algebra Appl. 23(2), 230–248 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Minden, V., Ho, K. L., Damle, A., Ying, L.: A recursive skeletonization factorization based on strong admissibility. Multiscale Model. Simul. 15(2), 768–796 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Sheng, Z., Dewilde, P., Chandrasekaran, S.: Algorithms to solve hierarchically semi-separable systems. In: System Theory, the Schur Algorithm and Multidimensional Analysis, pp. 255–294. Springer (2007)

  25. Solovyev, S.: Multifrontal hierarchically solver for 3D discretized elliptic equations. In: International Conference on Finite Difference Methods, pp. 371–378. Springer (2014)

  26. Sushnikova, D. A., Oseledets, I.V.: “Compress and eliminate” solver for symmetric positive definite sparse matrices. arXiv:1603.09133(2016)

  27. Sushnikova, D. A., Oseledets, I. V.: Preconditioners for hierarchical matrices based on their extended sparse form. Russ. J. Numer. Anal. M. 31(1), 29–40 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Tyrtyshnikov, E. E.: Mosaic-skeleton approximations. Calcolo 33(1), 47–57 (1996). https://doi.org/10.1007/BF02575706

    MathSciNet  MATH  Google Scholar 

  29. Xia, J., Chandrasekaran, S., Gu, M., Li, X. S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. A. 31(3), 1382–1411 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Yang, K., Pouransari, H., Darve, E.: Sparse hierarchical solvers with guaranteed convergence. arXiv:1611.03189 (2016)

Download references

Funding

Section 2 is supported by Russian Foundation for Basic Research grant 17-01-00854, Sections 3 and 4 are supported by Russian Foundation for Basic Research grant 16-31-60095, Sectiom 5 is supported by Russian Science Foundation grant 15-11-00033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria A. Sushnikova.

Additional information

Communicated by: Leslie Greengard

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushnikova, D.A., Oseledets, I.V. Simple non-extensive sparsification of the hierarchical matrices. Adv Comput Math 46, 52 (2020). https://doi.org/10.1007/s10444-020-09794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09794-y

Keywords

Mathematics Subject Classification (2010)

Navigation