Skip to main content

Advertisement

Log in

Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper aims to investigate the free and forced vibration behavior of a sandwich beam with functionally graded porous core and composite face layers embedded with shape memory alloy (SMA). Three different porosity patterns are assumed through the thickness direction of the core, and composite face layers are reinforced with carbon nanotubes (CNT). The sandwich beam is resting on an elastic foundation which is simulated by Vlasov’s model. By using Hamilton’s principle and first-order shear deformation theory, the governing equations of motion are derived. The analytical solution is presented to solve the equations of motion using Navier’s solution. Results are verified with corresponding literatures. Finally, the effects of important parameters such as temperature, volume fraction of SMA, porosity distribution, weight fraction of CNT, and geometric parameters are explored in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jung, G.Y., Choi, S.B., Kim, G.W.: Series Ni–Ti shape memory alloy wires with different martensitic-austenitic phase transformation temperatures as an actuator for input shaping control. Smart Mater. Struct. 28, 077001 (2019)

    Google Scholar 

  2. Vishal, P., Kaliperumal, D., Padhi, R.: Active vibration suppression of nonlinear cantilever beam using shape memory alloy actuators. IFAC-PapersOnLine 51, 130–135 (2018)

    Google Scholar 

  3. Suzuki, Y., Kagawa, Y.: Dynamic tracking control of an SMA wire actuator based on model matching. Sens. Actuators A 292, 129–36 (2019)

    Google Scholar 

  4. Abdullah, E.J., Gaikwad, P.S., Azid, N., Majid, D.A., Rafie, A.M.: Temperature and strain feedback control for shape memory alloy actuated composite plate. Sens. Actuators A 283, 134–140 (2018)

    Google Scholar 

  5. Bayat, Y., Ekhteraei Toussi, H.: A nonlinear study on structural damping of SMA hybrid composite beam. Thin-Walled Struct. 134, 18–28 (2019)

    Google Scholar 

  6. Helbert, G., Dieng, L., Chirani, S.A., Saint-Sulpice, L., Lecompte, T., Calloch, S., Pilvin, P.: Investigation of NiTi based damper effects in bridge cables vibration response: damping capacity and stiffness changes. Eng. Struct. 165, 184–197 (2018)

    Google Scholar 

  7. Kumbhar, S.B., Chavan, S.P., Gawade, S.S.: Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech. Syst. Signal Process. 100, 208–223 (2018)

    Google Scholar 

  8. Nejati, M., Ghasemi Ghalebahman, A., Soltanimaleki, A., Dimitri, R., Tornabene, F.: Thermal vibration analysis of SMA hybrid composite double curved sandwich panels. Compos. Struct. 224, 111035 (2019)

    Google Scholar 

  9. Karimiasl, M., Ebrahimi, F., Mahesh, V.: Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Struct. 143, 106152 (2019)

    Google Scholar 

  10. Garafolo, N.G., McHugh, G.R.: Mitigation of flutter vibration using embedded shape memory alloys. J. Fluids Struct. 76, 592–605 (2018)

    Google Scholar 

  11. Dutta, S.C., Majumder, R.: Shape memory alloy (SMA) as a potential damper in structural vibration control. In: Hloch, S., Klichová, D., Krolczyk, G., Chattopadhyaya, S., Ruppenthalová, L. (eds.) Advances in Manufacturing Engineering and Materials, pp. 485–492. Springer, Cham (2019)

    Google Scholar 

  12. Ghafoori, E., Neuenschwander, M., Shahverdi, M., Czaderski, C., Fontana, M.: Elevated temperature behavior of an iron-based shape memory alloy used for prestressed strengthening of civil structures. Constr. Build. Mater. 211, 437–452 (2019)

    Google Scholar 

  13. Abouali, S., Shahverdi, M., Ghassemieh, M., Motavalli, M.: Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys. Eng. Struct. 187, 133–148 (2019)

    Google Scholar 

  14. Trinh, M.C., Nguyen, D.D., Kim, S.E.: Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerosp. Sci. Technol. 87, 119–132 (2019)

    Google Scholar 

  15. Karamanli, A., Aydogdu, M.: Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory. Int. J. Mech. Sci. 159, 165–181 (2019)

    Google Scholar 

  16. Fang, W., Yu, T., Van Lich, L., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)

    Google Scholar 

  17. Tsai, S.N., Taylor, A.C.: Vibration behaviours of single/multi-debonded composite sandwich structures with nanoparticle-modified matrices. Compos. Struct. 210, 590–598 (2019)

    Google Scholar 

  18. Demir, O., Balkan, D., Peker, R.C., Metin, M., Arikoglu, A.: Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandw. Struct. Mater. 22(3), 743–770 (2020)

    Google Scholar 

  19. Demirhan, P.A., Taskin, V.: Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Compos. B Eng. 160, 661–676 (2019)

    Google Scholar 

  20. Heshmati, M., Jalali, S.K.: Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates. Eur. J. Mech.-A/Solids 74, 417–430 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Setoodeh, A.R., Shojaee, M., Malekzadeh, P.: Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos. B Eng. 165, 798–822 (2019)

    Google Scholar 

  22. Mohammadimehr, M., Okhravi, S.V., Akhavan Alavi, S.M.: Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. JVC/J. Vib. Control 24(8), 1551–1569 (2018)

    MathSciNet  Google Scholar 

  23. Ghorbanpour Arani, A., Rousta Navi, B., Mohammadimehr, M.: Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches. Adv. Compos. Mater. 25(5), 423–441 (2016)

    Google Scholar 

  24. Mohammadimehr, M., Navi, B.R., Arani, A.G.: Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings. Mech. Adv. Mater. Struct. 24(16), 1325–1342 (2017)

    Google Scholar 

  25. Zghal, S., Frikha, A., Dammak, F.: Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl. Math. Model. 53, 132–55 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Zghal, S., Frikha, A., Dammak, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. B Eng. 150, 165–83 (2018)

    MATH  Google Scholar 

  27. Zghal, S., Frikha, A., Dammak, F.: Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Compos. Struct. 176, 1107–1123 (2017)

    MATH  Google Scholar 

  28. Frikha, A., Zghal, S., Dammak, F.: Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerosp. Sci. Technol. 78, 438–51 (2018)

    MATH  Google Scholar 

  29. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. Int. J. Mech. Sci. 144, 74–89 (2018)

    Google Scholar 

  30. Trabelsi, S., Frikha, A., Zghal, S., Dammak, F.: A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Eng. Struct. 178, 444–59 (2019)

    Google Scholar 

  31. Belytschko, T., Loehnert, S., Song, J.H.: Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int. J. Numer. Methods Eng. 73(6), 869–894 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Song, J.H., Yoon, Y.C.: Multiscale failure analysis with coarse-grained micro cracks and damage. Theor. Appl. Fract. Mech. 72, 100–9 (2014)

    Google Scholar 

  33. Asareh, I., Song, J.H.: Nonnodal extended finite-element method for crack modeling with four-node quadrilateral elements. J. Eng. Mech. 145(10), 04019081 (2019)

    Google Scholar 

  34. Asareh, I., Yoon, Y.C., Song, J.H.: A numerical method for dynamic fracture using the extended finite element method with non-nodal enrichment parameters. Int. J. Impact Eng. 121, 63–76 (2018)

    Google Scholar 

  35. Asareh, I., Kim, T.Y., Song, J.H.: A linear complete extended finite element method for dynamic fracture simulation with non-nodal enrichments. Finite Elem. Anal. Des. 152, 27–45 (2018)

    MathSciNet  Google Scholar 

  36. Yoon, Y.C., Song, J.H.: Extended particle difference method for weak and strong discontinuity problems: part I. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput. Mech. 53(6), 1087–103 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Yoon, Y.C., Song, J.H.: Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems. Comput. Mech. 53(6), 1105–28 (2014)

    MathSciNet  Google Scholar 

  38. Yoon, Y.C., Song, J.H.: Extended particle difference method for moving boundary problems. Comput. Mech. 54(3), 723–43 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Yoon, Y.C., Schaefferkoetter, P., Rabczuk, T., Song, J.H.: New strong formulation for material nonlinear problems based on the particle difference method. Eng. Anal. Bound. Elem. 98, 310–27 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Beel, A., Kim, T.Y., Jiang, W., Song, J.H.: Strong form-based meshfree collocation method for wind-driven ocean circulation. Comput. Methods Appl. Mech. Eng. 351, 404–21 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Almasi, A., Kim, T.Y., Laursen, T.A., Song, J.H.: A strong form meshfree collocation method for frictional contact on a rigid obstacle. Comput. Methods Appl. Mech. Eng. 357, 112597 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Almasi, A., Beel, A., Kim, T.Y., Michopoulos, J.G., Song, J.H.: Strong-form collocation method for solidification and mechanical analysis of polycrystalline materials. J. Eng. Mech. 145(10), 04019082 (2019)

    Google Scholar 

  43. Mohammadimehr, M., Alimirzaei, S.: Nonlinear static and vibration analysis of Euler–Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM. Struct. Eng. Mech. 59(3), 431–454 (2016)

    Google Scholar 

  44. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng. Mech. 71(5), 485–502 (2019)

    Google Scholar 

  45. Mohammadimehr, M., Moradi, M., Loghman, A.: Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings. J. Solid Mech. 6(4), 347–365 (2014)

    Google Scholar 

  46. Mohammadimehr, M., Shahedi, S., Rousta Navi, B.: Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 231(20), 3866–3885 (2017)

    Google Scholar 

  47. Rajabi, J., Mohammadimehr, M.: Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby–Mori–Tanaka approach. Comput. Concrete 23(5), 361–376 (2019)

    Google Scholar 

  48. Mohammadimehr, M., Monajemi, A.A.: Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM. Smart Struct. Syst. 18(5), 1029–1062 (2016)

    Google Scholar 

  49. Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)

    Google Scholar 

  50. Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta. Mech. Sin. 34, 1124–1235 (2018)

    MathSciNet  Google Scholar 

  51. Bamdad, M., Mohammadimehr, M., Alambeigi, K.: Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: magneto-electro-elastic vibration and buckling solution. J. Vib. Control 25(23–24), 2875–2893 (2019)

    MathSciNet  Google Scholar 

  52. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Google Scholar 

  53. AkhavanAlavi, S.M., Mohammadimehr, M., Edjtahed, S.H.: Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method. Eur. J. Mech.-A/Solids 74, 449–461 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Brinson, L.C., Huang, M.S.: Simplifications and comparisons of shape memory alloy constitutive models. J. Intell. Mater. Syst. Struct. 7, 108–114 (1996)

    Google Scholar 

  55. De Sousa, V.C., Tan, D., De Marqui Jr, C., Erturk, A.: Tunable metamaterial beam with shape memory alloy resonators: theory and experiment. Appl. Phys. Lett. 113, 143502 (2018)

    Google Scholar 

  56. Shahedi, S., Mohammadimehr, M.: Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and carbon nanotubes-reinforced composite face sheets in thermal environment. J. Sandwich Struct. Mater. 22(2), 248–302 (2020)

    Google Scholar 

  57. Barati, M.R.: Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta Mech. 229, 1183–1196 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Emdadi, M., Mohammadimehr, M., Navi, B.R.: Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method. Adv. Nano Res. 7, 109–123 (2019)

    Google Scholar 

  59. Sahmani, S., Fotouhi, M., Aghdam, M.M.: Size-dependent nonlinear secondary resonance of micro-/nano-beams made of nano-porous biomaterials including truncated cube cells. Acta Mech. 230, 1077–1103 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Rostami, R., Irani Rahaghi, M., Mohammadimehr, M.: Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method. J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636218824139

    Article  Google Scholar 

  61. Wu, H., Kitipornchai, S., Yang, J.: Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int. J. Struct. Stab. Dyn. 15, 1540011 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Babaee, A., Sadighi, M., Nikbakht, A., Alimirzaei, S.: Generalized differential quadrature nonlinear buckling analysis of smart SMA/FG laminated beam resting on nonlinear elastic medium under thermal loading. J. Therm. Stresses 41(5), 583–607 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 891238/7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mohammadimehr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A

$$\begin{aligned} \psi \left( z \right)= & {} \left\{ \begin{array}{ll} \cos \left( \frac{{\uppi z}}{{h}_{c}} \right) &{}\qquad { \rightarrow \text { Symmetry }} \\ \cos \left( \frac{{\uppi z}}{{2}{h}_{c}}+\frac{{\uppi }}{{4}} \right) &{}\qquad { \rightarrow \text { Asymmetry }} \\ \psi &{}\qquad \rightarrow \text { Uniform } \\ \end{array} \right. \nonumber \\ {\uplambda }\left( {z} \right)= & {} \left\{ {\begin{array}{ll} 1-{e}_{\mathrm {m}}\psi \left( z \right) &{} \qquad \quad \text {Symmetry, Asymmetry } \\ \sqrt{1-{e}_{{0}}\psi }&{}\qquad \quad \mathrm {Uniform } \\ \end{array}} \right. \nonumber \\ \psi= & {} \frac{{1}}{{e}_{{0}}}- \frac{{1}}{{e}_{{0}}}\left( \frac{{2}}{{\uppi }}\sqrt{1-{e}_{{0}}} -\frac{{2}}{{\uppi }}{+1} \right) ^{{2}} , \quad \quad {e}_{{m}}=1-\sqrt{1- e_{0}}. \end{aligned}$$

1.2 Appendix B

$$\begin{aligned} Q_{11}= & {} \frac{E_{m}}{1-\nu _{m}^{2}},\\ Q_{55}= & {} G_{m}=\frac{E_{m}}{2(1+\nu _{m})},\\ C_{11}= & {} \frac{E_{c}(z)}{1-{\nu _{c}(z)}^{2}},\\ C_{55}= & {} G_{c}=\frac{E_{c}}{2(1+\nu _{c})}. \end{aligned}$$

1.3 Appendix C

$$\begin{aligned} D_{11}= & {} \frac{E_{f}(\rho )}{1-{\nu _{f}(\rho )}^{2}},\\ D_{12}= & {} D_{21}=\frac{E_{f}(\rho )\nu _{f}(\rho )}{1-{\nu _{f}(\rho )}^{2}},\\ D_{55}= & {} G_{f}=\frac{E_{f}(\rho )}{2(1+\nu _{f}(\rho ))}. \end{aligned}$$

Subscript “f” denotes the foundation.

1.4 Appendix D

$$\begin{aligned}&{{{\delta }} }{{{u}}}_{\mathbf {0}}:\quad -\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {uc}_{110}+\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {uc}_{111}+2\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) T_{0}\theta -2\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) T\theta \\&\quad -\left( \frac{\partial ^{2}}{\partial x^{2}}\phi \left( x,t \right) \right) {uft}_{111}-\left( \frac{\partial ^{2}}{\partial x^{2}}u\left( x,t \right) \right) {ufb}_{110}-\left( \frac{\partial ^{2}}{\partial x^{2}}\phi \left( x,t \right) \right) {ufb}_{111}\\&\quad -\left( \frac{\partial ^{2}}{\partial x^{2}}u\left( x,t \right) \right) {uft}_{110}+2\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) \xi _{s}\varepsilon _{L}\xi +\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) T_{sur}\alpha _{f}{ufb}_{110} \\&\quad +\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) T_{sur}\alpha _{f}{uft}_{110}+\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) C\beta _{f}{ufb}_{110}+\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) C\beta _{f}{uft}_{110} \\&\quad +\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) C\beta {uc}_{110}+\left( \frac{\partial }{\partial x}u\left( x,t \right) \right) T_{sur}\alpha {uc}_{110}-\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ic}_{0}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ic}_{1} \\&\quad -\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ifb}_{0}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ifb}_{1}-\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ift}_{0}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ift}_{1}=0, \\&\varvec{\delta }\varvec{w}_{\mathbf {0}}:-\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) {uc}_{550}-\left( \frac{\partial ^{2}}{\partial x^{2}}w\left( x,t \right) \right) {uc}_{550}-w\left( x,t \right) K_{1f}-\left( \frac{\partial ^{2}}{\partial x^{2}}w\left( x,t \right) \right) K_{2f} \\&\quad -\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) {uft}_{550}-\left( \frac{\partial ^{2}}{\partial t^{2}}w\left( x,t \right) \right) {Ic}_{0}-\left( \frac{\partial ^{2}}{\partial t^{2}}w\left( x,t \right) \right) {Ift}_{0} \\&\quad -\left( \frac{\partial ^{2}}{\partial x^{2}}w\left( x,t \right) \right) {ufb}_{550}\left( \frac{\partial ^{2}}{\partial x^{2}}w\left( x,t \right) \right) {uft}_{550}-\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) {ufb}_{550} =0, \end{aligned}$$
$$\begin{aligned}&{{{\delta }} }{{{\phi }} }_{\mathbf {0}}:\quad \left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) \xi _{s}\varepsilon _{L}\xi {usb}_{1}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) \xi _{s}\varepsilon _{L}\xi {ust}_{1}+\left( \frac{\partial }{\partial x}w\left( x,t \right) \right) {uc}_{550} \\&\quad +\phi \left( x,t \right) {uc}_{550}+\phi \left( x,t \right) {ufb}_{550}+\phi \left( x,t \right) {uft}_{550}+\left( \frac{\partial }{\partial x}w\left( x,t \right) \right) {uft}_{550} \\&\quad +\left( \frac{\partial }{\partial x}w\left( x,t \right) \right) {ufb}_{550}-\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ic}_{1}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ic}_{2}-\left( \frac{\partial ^{2}}{\partial x^{2}}u\left( x,t \right) \right) {ufb}_{111} \\&\quad -\left( \frac{\partial ^{2}}{\partial x^{2}}\phi \left( x,t \right) \right) {ufb}_{112}-\left( \frac{\partial ^{2}}{\partial x^{2}}u\left( x,t \right) \right) {uc}_{111}-\left( \frac{\partial ^{2}}{\partial x^{2}}\phi \left( x,t \right) \right) {uc}_{112} \\&\quad -\left( \frac{\partial ^{2}}{\partial x^{2}}\phi \left( x,t \right) \right) {uft}_{112}-\left( \frac{\partial ^{2}}{\partial x^{2}}u\left( x,t \right) \right) {uft}_{111}-\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ifb}_{1}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ifb}_{2} \\&\quad -\left( \frac{\partial ^{2}}{\partial t^{2}}u\left( x,t \right) \right) {Ift}_{1}-\left( \frac{\partial ^{2}}{\partial t^{2}}\phi \left( x,t \right) \right) {Ift}_{2}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) \beta _{f}C{ufb}_{111} \\&\quad +\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) \beta _{f}C{uft}_{111}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T_{sur}\alpha _{f}{uft}_{111}-\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T\theta {usb}_{1}\\&\quad -\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T\theta {ust}_{1}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T_{0}\theta {usb}_{1}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T_{0}\theta {ust}_{1}\\&\quad +\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T_{sur}\alpha _{f}{ufb}_{111}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) \beta C{uc}_{111}+\left( \frac{\partial }{\partial x}\phi \left( x,t \right) \right) T_{sur}\alpha {uc}_{111}=0, \end{aligned}$$
$$\begin{aligned}&{uc}_{110}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \mathrm{d}z},&{uc}_{111}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z\mathrm{d}z}, \\&{uc}_{112}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z^{2}\mathrm{d}z},&{uc}_{113}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z^{3}\mathrm{d}z}, \\&{uc}_{114}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z^{4}\mathrm{d}z},&{uc}_{116}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z^{6}\mathrm{d}z},\\&{uc}_{550}=\int _{-h_{c}/2}^{h_{c}/2} {c_{55}\left( z \right) \mathrm{d}z},&{uc}_{552}=\int _{-h_{c}/2}^{h_{c}/2} {c_{11}\left( z \right) \times z^{5}\mathrm{d}z},\\&{uc}_{554}=\int _{-h_{c}/2}^{h_{c}/2} {c_{55}\left( z \right) \times z^{4}\mathrm{d}z},&{ufb}_{110}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \mathrm{d}z}, \\&{ufb}_{111}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \times z\mathrm{d}z},&{ufb}_{112}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \times z^{2}\mathrm{d}z}, \\&{ufb}_{113}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \times z^{3}\mathrm{d}z},&{ufb}_{114}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \times z^{4}\mathrm{d}z}, \\&{ufb}_{116}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{11}^{fb}\left( z \right) \times z^{6}\mathrm{d}z},&{ufb}_{550}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{55}^{fb}\left( z \right) \mathrm{d}z}, \\&{ufb}_{552}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{55}^{fb}\left( z \right) \times z^{2}\mathrm{d}z},&{ufb}_{554}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {c_{55}^{fb}\left( z \right) \times z^{4}\mathrm{d}z}, \\&{uft}_{110}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \mathrm{d}z},&{uft}_{111}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \times z\mathrm{d}z}, \\&{utf}_{112}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \times z^{2}\mathrm{d}z},&{uft}_{113}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \times z^{3}\mathrm{d}z}, \\&{uft}_{114}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \times z^{4}\mathrm{d}z},&{uft}_{116}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{11}^{ft}\left( z \right) \times z^{6}\mathrm{d}z}, \\&{uft}_{550}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{55}^{ft}\left( z \right) \mathrm{d}z},&{uft}_{552}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{55}^{ft}\left( z \right) \times z^{2}\mathrm{d}z}, \\&{uft}_{554}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {c_{55}^{ft}\left( z \right) \times z^{4}\mathrm{d}z},&{Ic}_{0}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\mathrm{d}z}, \\&{Ic}_{1}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\times {z}\mathrm{d}z},&{Ic}_{2}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\times z^{2}\mathrm{d}z}, \\&{Ic}_{3}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\times z^{3}\mathrm{d}z},&{Ic}_{4}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\times z^{4}\mathrm{d}z}, \\&{Ic}_{6}=\int _{-\frac{h_{c}}{2}-h_{f}-h_{p}}^{{-h}_{c}/2-h_{f}} {\rho _{c}(z)\times z^{6}\mathrm{d}z},&{Ifb}_{0}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\mathrm{d}z}, \\&{Ifb}_{1}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\times z\mathrm{d}z},&{Ifb}_{2}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\times z^{2}\mathrm{d}z}, \\&{Ifb}_{3}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\times z^{3}\mathrm{d}z},&{Ifb}_{4}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\times z^{4}\mathrm{d}z},\\&{Ifb}_{6}=\int _{-\frac{h_{c}}{2}-h_{f}}^{{-h}_{c}/2} {\rho _{bf}(z)\times z^{6}\mathrm{d}z},&{Ift}_{0}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\mathrm{d}z}, \\&{Ift}_{1}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\times z\mathrm{d}z},&{Ift}_{2}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\times z^{2}\mathrm{d}z}, \\&{Ift}_{3}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\times z^{3}\mathrm{d}z},&{Ift}_{4}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\times z^{4}\mathrm{d}z}, \\&{Ift}_{6}=\int _\frac{h_{c}}{2}^{\frac{h_{c}}{2}+h_{f}} {\rho _{tf}(z)\times z^{6}\mathrm{d}z}. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alambeigi, K., Mohammadimehr, M., Bamdad, M. et al. Free and forced vibration analysis of a sandwich beam considering porous core and SMA hybrid composite face layers on Vlasov’s foundation. Acta Mech 231, 3199–3218 (2020). https://doi.org/10.1007/s00707-020-02697-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02697-5

Navigation