Skip to main content
Log in

Fundamental solution of steady oscillation in swelling porous thermoelastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present paper studies the fundamental solution and plane wave propagation in swelling porous thermoelastic material. It is observed that there exist three longitudinal waves and two transversal waves propagating with different velocities. Numerical computations are performed to obtain the phase velocity and attenuation coefficients of plane waves in the medium and the values so obtained are presented graphically. By means of elementary functions for swelling porous thermoelastic medium in case of steady oscillations, the fundamental solution is obtained. Some basic properties of this solution are established and special cases are also deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturate porous solid: I low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  Google Scholar 

  2. Biot, M.A., Willis, D.G.: Elastic coefficients of the theory of consolidation. J. Acoust. Soc. Am. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  3. Eringen, A.C.: A continuum theory of swelling porous elastic soils. Int. J. Eng. Sci. 32(8), 1337–1349 (1994)

    Article  MathSciNet  Google Scholar 

  4. Gales, C.: Some uniqueness and continuous dependence results in the theory of swelling porous elastic soils. Int. J. Eng. Sci. 40, 1211–1231 (2002)

    Article  MathSciNet  Google Scholar 

  5. Gales, C.: On the spatial behavior in the theory of swelling porous elastic soils. Int. J. Solids Struct. 39, 4151–4165 (2002)

    Article  MathSciNet  Google Scholar 

  6. Gales, C.: Spatial decay estimates for solutions describing harmonic vibrations in the theory of swelling porous elastic soils. Acta Mech. 161, 151–163 (2003)

    Article  Google Scholar 

  7. Quintanilla, R.: On existence and stability in the theory of swelling porous elastic soils. IMA J. Appl. Math. 68, 491–506 (2003)

    Article  MathSciNet  Google Scholar 

  8. Gales, C.: On the asymptotic partition of energy in the theory of swelling porous elastic soils. Arch. Mech. 55, 91–107 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Gales, C.: Potential method in the linear theory of swelling porous elastic soils. Eur. J. Mech. A Solids 23, 957–973 (2004)

    Article  MathSciNet  Google Scholar 

  10. Chirita, S.: On the spatial decay of solutions in the theory of swelling porous thermoelastic soils. Int. J. Eng. Sci. 42, 1995–2010 (2004)

    Article  MathSciNet  Google Scholar 

  11. Quintanilla, R.: Exponential stability of solutions of swelling porous elastic soils. Mechanica 39, 139–145 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gales, C.: Waves and vibrations in the theory of swelling porous elastic soils. Eur. J. Mech. A Solids 23, 345–357 (2004)

    Article  MathSciNet  Google Scholar 

  13. Bennethum, L.S.: Theory of flow and deformation of swelling porous materials at the macroscale. Comput. Geotech. 34(267–278), 345–357 (2007)

    Google Scholar 

  14. Gales, C.: On the asymptotic spatial behavior in the theory of mixtures of thermoelastic solids. Int. J. Solids Struct. 45, 2117–2127 (2008)

    Article  Google Scholar 

  15. de Boer, R., Svanadze, M.: Fundamental solution of the system of equations of steady oscillations in the theory of fluid-saturated porous media. Transp. Porous Media 56, 39–50 (2004)

    Article  MathSciNet  Google Scholar 

  16. Svanadze, M.: Fundamental solution of the system of equations of steady oscillations in the theory of microstretch elastic solids. Int. J. Eng. Sci. 42, 1897–1910 (2004)

    Article  MathSciNet  Google Scholar 

  17. Svanadze, M., Cicco, S.: Fundamental solution in the theory of thermomicrostretch elastic solids. Int. J. Eng. Sci. 43, 417–431 (2005)

    Article  MathSciNet  Google Scholar 

  18. Svanadze, M., Giordano, P., Tibullo, V.: Basic properties of the fundamental solution in the theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 33, 721–753 (2010)

    Article  Google Scholar 

  19. Kumar, R., Kansal, T.: Plane waves and fundamental solution in the generalized theories of thermoelastic diffusion. Int. J. Appl. Math Mech. 8(4), 1–20 (2012)

    Google Scholar 

  20. Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. J. Therm. Stress. 36, 94–111 (2013)

    Article  Google Scholar 

  21. Sharma, S., Sharma, K., Bhargava, R.R.: Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids. Material Phys. Mech. 17(2), 93–110 (2013)

    Google Scholar 

  22. Sharma, S., Sharma, K., Bahrgava, R.R.: Plane waves and fundamental solution in an electro-microstretch elastic solids. Afr. Math. 25(2), 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kumar, R., Chawla, V.: General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids. J. Adv. Math. 3(1), 47–54 (2014)

    Article  Google Scholar 

  24. Kumar, R., Divya, Kumar K: Fundamental and plane wave solution in swelling porous medium. Afrika Matematika (Springer) 25, 397–410 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kumar, R., Kaur, M., Rajvanshi, S.C.: Representation of fundamental and plane wave solutions in the theory of micropolar generalized thermoelastic solid with two temperatures. J. Comput. Theor. Nanosci. 12(4), 691–702 (2015)

    Article  Google Scholar 

  26. Goyal, S., Tomar, S.K.: Reflection and transmission of inhomogeneous waves at the plane interface between two dissimilar swelling porous half-space. Spec. Top. Rev. Porous Media Int. J. 6(1), 51–69 (2015)

    Article  Google Scholar 

  27. Zorammuana, C., Singh, S.S.: Elastic waves in thermoelastic saturated porous medium. Meccanica 51(3), 593–609 (2016)

    Article  MathSciNet  Google Scholar 

  28. Biswas, S.: Fundamental solution of steady oscillations in thermoelastic medium with voids. Waves Random Complex Media (2018). https://doi.org/10.1080/17455030.2018.1557759

    Article  Google Scholar 

  29. Biswas, S., Sarkar, N.: Fundamental solution of the steady oscillations equations in porous thermoelastic medium with dual-phase-lag model. Mech. Mater. 26, 140–147 (2018)

    Article  Google Scholar 

  30. Kumar, R., Kumar, S., Gourla, M.G.: Plane wave and fundamental solution in thermoporoelastic medium. Mater. Phys. Mech. 35, 101–114 (2018)

    Google Scholar 

  31. Svanadze, M.: Fundamental solutions in the linear theory of thermoelasticity for solids with triple porosity. Math. Mech. Solids 24(4), 919–938 (2019)

    Article  MathSciNet  Google Scholar 

  32. Svanadze, M.: On the linear theory of double porosity thermoelasticity under local thermal nonequilibrium. J. Therm. Stress. 42(7), 890–913 (2019)

    Article  Google Scholar 

  33. Biswas, S.: Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity. Mech. Based Des. Struct. 47(4), 430–452 (2019)

    Article  Google Scholar 

  34. Hormander, Linear Partial: Differential Operators. Springer, Berlin (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Batra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Batra, D. Fundamental solution of steady oscillation in swelling porous thermoelastic medium. Acta Mech 231, 3247–3263 (2020). https://doi.org/10.1007/s00707-020-02704-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02704-9

Navigation