Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Functional Nanomaterials-Catalyzed Production of Biodiesel

Author(s): Hu Pan, Hu Li*, Heng Zhang, Anping Wang and Song Yang*

Volume 16, Issue 3, 2020

Page: [376 - 391] Pages: 16

DOI: 10.2174/1573413715666190411142820

Abstract

Background: Biodiesel, as a green and renewable biofuel, has great potential to replace fossil diesel. The development of efficient and stable heterogeneous catalysts is vital to produce biodiesel in an efficient and green way. Nanocatalysts provide a high surface-to-volume ratio as well as high active site loading and can improve mass transfer, which is beneficial to enhance their catalytic activity.

Objective: The review focuses on the latest advances in the production of biodiesel using nanostructured catalysts.

Methods: Biodiesel is mainly produced through esterification and transesterification reaction using acids, bases or lipases as catalysts. We mainly review the synthesis methods and physicochemical properties of various basic, acidic and lipase nanocatalysts. Meanwhile, their catalytic activities in biodiesel production are also discussed.

Results: Alkali nanocatalysts are mainly suitable for transformation of oils with low acid values to biodiesel via transesterification reaction. In contrast, acidic nanocatalysts are not sensitive to water as well as free fatty acids and can avoid saponification associated with basic nanocatalysts while promote simultaneous esterification and transesterification reaction. However, acid-catalyzed transesterification usually requires harsh reaction conditions. In addition, the lipase-catalyzed process is also suitable for non-edible oils containing high contents of free fatty acids, which possess environmental and economic advantages.

Conclusion: Nanocatalysts have many advantages such as good accessibility with nanostructure, high active site loading and reduction of mass transfer resistance. However, most of those materials undergo deactivation after several cycles. Therefore, the development of more efficient, stable, and low-cost nanocatalysts is desirable for producing biodiesel.

Keywords: Functional nanocatalysts, biodiesel production, renewable oil, transesterification, esterification, heterogeneous catalysis.

Graphical Abstract
[1]
Tang, Z.E.; Lim, S.; Pang, Y.L.; Ong, H.C.; Lee, K.T. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renew. Sustain. Energy Rev., 2018, 92, 235-253.
[http://dx.doi.org/10.1016/j.rser.2018.04.056]
[2]
Zhang, H.; Zhou, Q.; Chang, F.; Pan, H.; Liu, X.F.; Li, H.; Hu, D.Y.; Yang, S. Production and fuel properties of biodiesel from Firmiana platanifolia Lf as a potential non-food oil source. Ind. Crops Prod., 2015, 76, 768-771.
[http://dx.doi.org/10.1016/j.indcrop.2015.08.002]
[3]
de Lima, A.L.; Ronconi, C.M.; Mota, C.J. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol., 2016, 6, 2877-2891.
[http://dx.doi.org/10.1039/C5CY01989C]
[4]
Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev., 2018, 90, 356-369.
[http://dx.doi.org/10.1016/j.rser.2018.03.069]
[5]
Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers. Manage., 2017, 138, 45-53.
[http://dx.doi.org/10.1016/j.enconman.2017.01.060]
[6]
Pan, H.; Li, H.; Liu, X.F.; Zhang, H.; Yang, K.L.; Huang, S.; Yang, S. Mesoporous polymeric solid acid as efficient catalyst for (trans) esterification of crude Jatropha curcas oil. Fuel Process. Technol., 2016, 150, 50-57.
[http://dx.doi.org/10.1016/j.fuproc.2016.04.035]
[7]
Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Convers. Manage., 2018, 166, 534-544.
[http://dx.doi.org/10.1016/j.enconman.2018.04.061]
[8]
Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.S. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc., 2012, 134(41), 16948-16950.
[http://dx.doi.org/10.1021/ja307455w] [PMID: 23009896]
[9]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111(5), 3036-3075.
[http://dx.doi.org/10.1021/cr100230z] [PMID: 21401074]
[10]
Gai, C.; Zhang, F.; Yang, T.; Liu, Z.; Jiao, W.; Peng, N.; Liu, T.; Lang, Q.; Xia, Y. Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chem., 2018, 20, 2788-2800.
[http://dx.doi.org/10.1039/C8GC00433A]
[11]
Sharma, R.K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R.S.; Gawande, M.B. Fe3O4 (iron oxide)-supported nanocatalysts: Synthesis, characterization and applications in coupling reactions. Green Chem., 2016, 18, 3184-3209.
[http://dx.doi.org/10.1039/C6GC00864J]
[12]
Nadejde, C.; Neamtu, M.; Hodoroaba, V.D.; Schneider, R.J.; Paul, A.; Ababei, G.; Panne, U. Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Appl. Catal. B, 2015, 176, 667-677.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.050]
[13]
Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions-a review. J. Mater. Chem. A, 2015, 3, 11157-11182.
[http://dx.doi.org/10.1039/C5TA00753D]
[14]
Liu, S.; Bai, S.Q.; Zheng, Y.; Shah, K.W.; Han, M.Y. Composite metal-oxide nanocatalysts. ChemCatChem, 2012, 4, 1462-1484.
[http://dx.doi.org/10.1002/cctc.201200264]
[15]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[16]
Chang, F.; Zhou, Q.; Pan, H.; Liu, X.F.; Zhang, H.; Xue, W.; Yang, S. Solid mixed‐metal‐oxide catalysts for biodiesel production: A review. Energy Technol. (Weinheim), 2014, 2, 865-873.
[http://dx.doi.org/10.1002/ente.201402089]
[17]
Marinković, D.M.; Stanković, M.V.; Veličković, A.V.; Avramović, J.M.; Miladinović, M.R.; Stamenković, O.O.; Veljković, V.B.; Jovanović, D.M. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew. Sustain. Energy Rev., 2016, 56, 1387-1408.
[http://dx.doi.org/10.1016/j.rser.2015.12.007]
[18]
Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008, 87, 2798-2806.
[http://dx.doi.org/10.1016/j.fuel.2007.10.019]
[19]
Roschat, W.; Phewphong, S.; Thangthong, A.; Moonsin, P.; Yoosuk, B.; Kaewpuang, T.; Promarak, V. Catalytic performance enhancement of CaO by hydration-dehydration process for biodiesel production at room temperature. Energy Convers. Manage., 2018, 165, 1-7.
[http://dx.doi.org/10.1016/j.enconman.2018.03.047]
[20]
Su, M.; Yang, R.; Li, M. Biodiesel production from hempseed oil using alkaline earth metal oxides supporting copper oxide as bi-functional catalysts for transesterification and selective hydrogenation. Fuel, 2013, 103, 398-407.
[http://dx.doi.org/10.1016/j.fuel.2012.07.009]
[21]
Dawood, S.; Ahmad, M.; Ullah, K.; Zafar, M.; Khan, K. Synthesis and characterization of methyl esters from non-edible plant species yellow oleander oil; using magnesium oxide (MgO) nano-catalyst. Mater. Res. Bull., 2018, 101, 371-379.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.047]
[22]
Ashok, A.; Kennedy, L.J.; Vijaya, J.J.; Aruldoss, U. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean. Technol. Envir., 2018, 20, 1219-1231.
[http://dx.doi.org/10.1007/s10098-018-1547-x]
[23]
Margellou, A.; Koutsouki, A.; Petrakis, D.; Vaimakis, T.; Manos, G.; Kontominas, M.; Pomonis, P.J. Enhanced production of biodiesel over MgO catalysts synthesized in the presence of Poly-Vinyl-Alcohol (PVA). Ind. Crops Prod., 2018, 114, 146-153.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.079]
[24]
Veljković, V.B.; Stamenković, O.S.; Todorović, Z.B.; Lazić, M.L.; Skala, D.U. Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel, 2009, 88, 1554-1562.
[http://dx.doi.org/10.1016/j.fuel.2009.02.013]
[25]
Ono, Y. Solid base catalysts for the synthesis of fine chemicals. J. Catal., 2003, 216, 406-415.
[http://dx.doi.org/10.1016/S0021-9517(02)00120-3]
[26]
Gargari, M.H.; Sadrameli, S.M. Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor. Energy, 2018, 148, 888-895.
[http://dx.doi.org/10.1016/j.energy.2018.01.105]
[27]
Keihani, M.; Esmaeili, H.; Rouhi, P. Biodiesel production from chicken fat using nano-calcium oxide catalyst and improving the fuel properties via blending with diesel. Phys. Chem. Res, 2018, 6, 521-529.
[28]
Hebbar, H.H.; Math, M.C.; Yatish, K.V. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy, 2018, 143, 25-34.
[http://dx.doi.org/10.1016/j.energy.2017.10.118]
[29]
Mazaheri, H.; Ong, H.C.; Masjuki, H.H.; Amini, Z.; Harrison, M.D.; Wang, C.T.; Kusumo, F.; Alwi, A. Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy, 2018, 144, 10-19.
[http://dx.doi.org/10.1016/j.energy.2017.11.073]
[30]
Pandit, P.R.; Fulekar, M.H. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology. J. Environ. Manage., 2017, 198(Pt 1), 319-329.
[http://dx.doi.org/10.1016/j.jenvman.2017.04.100] [PMID: 28494420]
[31]
Teo, S.H.; Islam, A.; Masoumi, H.R.F.; Taufiq-Yap, Y.H.; Janaun, J.; Chan, E.S. Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renew. Energy, 2017, 111, 892-905.
[http://dx.doi.org/10.1016/j.renene.2017.04.039]
[32]
Boonyuen, S.; Smith, S.M.; Malaithong, M.; Prokaew, A.; Cherdhirunkorn, B.; Luengnaruemitchai, A. Biodiesel production by a renewable catalyst from calcined Turbo jourdani (Gastropoda: Turbinidae) shells. J. Clean. Prod., 2018, 177, 925-929.
[http://dx.doi.org/10.1016/j.jclepro.2017.10.137]
[33]
Shi, M.; Zhang, P.; Fan, M.; Jiang, P.; Dong, Y. Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production. Fuel, 2017, 197, 343-347.
[http://dx.doi.org/10.1016/j.fuel.2017.02.060]
[34]
Dai, Y.M.; Wang, Y.F.; Chen, C.C. Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production. Catal. Commun., 2018, 106, 20-24.
[http://dx.doi.org/10.1016/j.catcom.2017.12.002]
[35]
Falcão, M.S.; Garcia, M.A.; de Moura, C.V.; Nicolodib, S.; de Moura, E.M. Synthesis; characterization and catalytic evaluation of magnetically recoverable SrO/CoFe2O4 nanocatalyst for biodiesel production from babassu oil transesterification. J. Braz. Chem. Soc., 2018, 29, 845-855.
[36]
Chang, K.L.; Lin, Y.C.; Jhang, S.R.; Cheng, W.L.; Chen, S.C.; Mao, S.Y. Rapid Jatropha-castor biodiesel production with microwave heating and a heterogeneous base catalyst nano-Ca(OH)2/Fe3O4. Catalysts, 2017, 7, 203.
[http://dx.doi.org/10.3390/catal7070203]
[37]
Noshadi, I.; Kanjilal, B.; Liu, F. Porous carbonaceous solid acids derived from farm animal waste and their use in catalyzing biomass transformation. Appl. Catal. A Gen., 2016, 513, 19-29.
[http://dx.doi.org/10.1016/j.apcata.2015.12.032]
[38]
Sano, N.; Yamada, K.; Tsunauchi, S.; Tamon, H. A novel solid base catalyst for transesterification of triglycerides toward biodiesel production: Carbon nanohorn dispersed with calcium ferrite. Chem. Eng. J., 2017, 307, 135-142.
[http://dx.doi.org/10.1016/j.cej.2016.08.010]
[39]
Liu, K.; Wang, R.; Yu, M. An efficient; recoverable solid base catalyst of magnetic bamboo charcoal: Preparation; characterization; and performance in biodiesel production. Renew. Energy, 2018, 127, 531-538.
[http://dx.doi.org/10.1016/j.renene.2018.04.092]
[40]
Putra, M.D.; Irawan, C.; Ristianingsih, Y.; Nata, I.F. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. J. Clean. Prod., 2018, 195, 1249-1258.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.010]
[41]
Naor, E.O.; Koberg, M.; Gedanken, A. Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation. Renew. Energy, 2017, 101, 493-499.
[http://dx.doi.org/10.1016/j.renene.2016.09.007]
[42]
Hung, C.H.; Chen, C.S.; Sheu, H.S.; Chang, J.R. Deactivation and rejuvenation of pellet MgO/SiO2 catalysts for transesterification of soybean oil with methanol to biodiesel: Roles of MgO morphology change in catalysis. Ind. Eng. Chem. Res., 2018, 57, 456-469.
[http://dx.doi.org/10.1021/acs.iecr.7b02859]
[43]
Xie, W.; Han, Y.; Wang, H. Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renew. Energy, 2018, 125, 675-681.
[http://dx.doi.org/10.1016/j.renene.2018.03.010]
[44]
Navas, M.B.; Lick, I.D.; Bolla, P.A.; Casella, M.L.; Ruggera, J.F. Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem. Eng. Sci., 2018, 187, 444-454.
[http://dx.doi.org/10.1016/j.ces.2018.04.068]
[45]
Tang, Y.; Ren, H.; Chang, F.; Gu, X.; Zhang, J. Nano KF/Al2O3 particles as an efficient catalyst for no-glycerol biodiesel production by coupling transesterification. RSC Adv, 2017, 7, 5694-5700.
[http://dx.doi.org/10.1039/C6RA25782H]
[46]
Feyzi, M.; Shahbazi, Z. Preparation; kinetic and thermodynamic studies of Al-Sr nanocatalysts for biodiesel production. J. Taiwan Inst. Chem. E, 2017, 71, 145-155.
[http://dx.doi.org/10.1016/j.jtice.2016.11.023]
[47]
Yahya, N.Y.; Ngadi, N.; Jusoh, M.; Halim, N.A.A. Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Convers. Manage., 2016, 129, 275-283.
[http://dx.doi.org/10.1016/j.enconman.2016.10.037]
[48]
Salinas, D.; Sepúlveda, C.; Escalona, N. GFierro, J.L.; Pecchi, G. Sol-gel La2O3-ZrO2 mixed oxide catalysts for biodiesel production. J. Energy Chem., 2018, 27, 565-572.
[http://dx.doi.org/10.1016/j.jechem.2017.11.003]
[49]
Navajas, A.; Campo, I.; Moral, A.; Echave, J.; Sanz, O.; Montes, M.; Odriozola, J.A.; Arzamendi, G.; Gandía, L.M. Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 2018, 211, 173-181.
[http://dx.doi.org/10.1016/j.fuel.2017.09.061]
[50]
Wang, J.; Yang, L.; Luo, W.; Yang, G.; Miao, C.; Fu, J.; Xing, S.; Fan, P.; Lv, P.; Wang, Z. Sustainable biodiesel production via transesterification by using recyclable Ca2MgSi2O7 catalyst. Fuel, 2017, 196, 306-313.
[http://dx.doi.org/10.1016/j.fuel.2017.02.007]
[51]
Lu, Y.; Zhang, Z.; Xu, Y.; Liu, Q.; Qian, G. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel. Bioresour. Technol., 2015, 190, 438-441.
[http://dx.doi.org/10.1016/j.biortech.2015.02.046] [PMID: 25740001]
[52]
Mansir, N.; Teo, S.H.; Rabiu, I.; Taufiq-Yap, Y.H. Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chem. Eng. J., 2018, 347, 137-144.
[http://dx.doi.org/10.1016/j.cej.2018.04.034]
[53]
Nayebzadeh, H.; Haghighi, M.; Saghatoleslami, N.; Tabasizadeh, M.; Yousefi, S. Fabrication of carbonated alumina doped by calcium oxide via microwave combustion method used as nanocatalyst in biodiesel production: Influence of carbon source type. Energy Convers. Manage., 2018, 171, 566-575.
[http://dx.doi.org/10.1016/j.enconman.2018.05.081]
[54]
Liu, Y.; Zhang, P.; Fan, M.; Jiang, P. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel, 2016, 164, 314-321.
[http://dx.doi.org/10.1016/j.fuel.2015.10.008]
[55]
Liu, K.; Wang, R.; Yu, M. Biodiesel production from soybean oils by a novel nano-magnetic solid base catalyst (K/ZrO2/γ-Fe2O3). RSC Adv, 2017, 7, 51814-51821.
[http://dx.doi.org/10.1039/C7RA10067A]
[56]
Zhang, L.; Guo, W.; Liu, D.; Yao, J.; Ji, L.; Xu, N. Low boiling point organic amine catalyzed transesterification for biodiesel production. Energy Fuels, 2008, 22, 1353-1357.
[http://dx.doi.org/10.1021/ef700636u]
[57]
Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R.F.T. Definitions of terms relating to the structure and processing of sols; gels; networks; and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem., 2007, 79, 1801-1829.
[http://dx.doi.org/10.1351/pac200779101801]
[58]
Chiang, Y.D.; Dutta, S.; Chen, C.T.; Huang, Y.T.; Lin, K.S.; Wu, J.C.; Suzuki, N.; Yamauchi, Y.; Wu, K.C.W. Functionalized Fe3O4@silica core-shell nanoparticles as microalgae harvester and catalyst for biodiesel production. ChemSusChem, 2015, 8(5), 789-794.
[http://dx.doi.org/10.1002/cssc.201402996] [PMID: 25477296]
[59]
Xie, W.; Han, Y.; Tai, S. Biodiesel production using biguanide-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles. Fuel, 2017, 210, 83-90.
[http://dx.doi.org/10.1016/j.fuel.2017.08.054]
[60]
Yue, M.B.; Sun, L.B.; Cao, Y.; Wang, Z.J.; Wang, Y.; Yu, Q.; Zhu, J.H. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater., 2008, 114, 74-81.
[http://dx.doi.org/10.1016/j.micromeso.2007.12.016]
[61]
Xie, W.; Yang, X.; Fan, M. Novel solid base catalyst for biodiesel production: Mesoporous SBA-15 silica immobilized with 1,3-dicyclohexyl-2-octylguanidine. Renew. Energy, 2015, 80, 230-237.
[http://dx.doi.org/10.1016/j.renene.2015.02.014]
[62]
Sammah, N.; Ghiaci, M. Heterogenization of a homogenous catalyst: Synthesis and characterization of imidazolium ionene/OH-@SiO2 as an efficient basic catalyst for biodiesel production. New J. Chem., 2018, 42, 67-75.
[http://dx.doi.org/10.1039/C7NJ03285D]
[63]
Xie, W.L.; Wan, F. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel, 2018, 220, 248-256.
[http://dx.doi.org/10.1016/j.fuel.2018.02.014]
[64]
Yuan, H.; Jiao, Q.; Zhang, Y.; Zhang, J.; Wu, Q.; Zhao, Y.; Neerunjun, S. Li, H. Magnetic CoFe2O4 nanoparticles supported basic poly (ionic liquid)s catalysts: Preparation and catalytic performance comparison in transesterification and Knoevenagel condensation. Catal. Lett., 2016, 146, 951-959.
[http://dx.doi.org/10.1007/s10562-016-1718-5]
[65]
Sun, J.; Yang, J.; Li, S.; Xu, X. Basic ionic liquid immobilized oxides as heterogeneous catalyst for biodiesel synthesis from waste cooking oil. Catal. Commun., 2016, 83, 35-38.
[http://dx.doi.org/10.1016/j.catcom.2016.05.002]
[66]
Pan, H.; Liu, X.; Zhang, H.; Yang, K.; Huang, S.; Yang, S. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew. Energy, 2017, 107, 245-252.
[http://dx.doi.org/10.1016/j.renene.2017.02.009]
[67]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Souzanchi, S.; Xu, C.C.; Yang, S. Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy, 2018, 223, 416-429.
[http://dx.doi.org/10.1016/j.apenergy.2018.04.061]
[68]
Yang, K.L.; Huang, S.; Pan, H.; Zhang, H.; Liu, X.F.; Yang, S. Polyoxometalate-MgF2 hybrids as heterogeneous solid acid catalysts for efficient biodiesel production. RSC Adv, 2017, 7, 33335-33343.
[http://dx.doi.org/10.1039/C7RA06080G]
[69]
Varghese, R.; Henry, J.P.; Irudayaraj, J. Ultrasonication‐assisted transesterification for biodiesel production by using heterogeneous ZnO nanocatalyst. Environ. Prog. Sustain. Energy, 2018, 37, 1176-1182.
[http://dx.doi.org/10.1002/ep.12770]
[70]
Mohammed, N.I.; Kabbashi, N.A.; Alam, M.Z.; Mirghani, M.E.S. Esterification of Jatropha curcas hydrolysate using powdered niobic acid catalyst. J. Taiwan Inst. Chem. E, 2016, 63, 243-249.
[http://dx.doi.org/10.1016/j.jtice.2016.03.007]
[71]
Baskar, G.; Soumiya, S. Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renew. Energy, 2016, 98, 101-107.
[http://dx.doi.org/10.1016/j.renene.2016.02.068]
[72]
Baskar, G.; Aberna Ebenezer Selvakumari, I.; Aiswarya, R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresour. Technol., 2018, 250, 793-798.
[http://dx.doi.org/10.1016/j.biortech.2017.12.010] [PMID: 29245130]
[73]
Dantas, J.; Leal, E.; Mapossa, A.B.; Cornejo, D.R.; Costa, A.C.F.M. Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel, 2017, 191, 463-471.
[http://dx.doi.org/10.1016/j.fuel.2016.11.107]
[74]
Dehghani, S.; Haghighi, M. Sono-sulfated zirconia nanocatalyst supported on MCM-41 for biodiesel production from sunflower oil: Influence of ultrasound irradiation power on catalytic properties and performance. Ultrason. Sonochem., 2017, 35(Pt A), 142-151.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.012] [PMID: 27650807]
[75]
Saravanan, K.; Tyagi, B.; Shukla, R.S.; Bajaj, H.C. Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl. Catal. B, 2015, 172, 108-115.
[http://dx.doi.org/10.1016/j.apcatb.2015.02.014]
[76]
Labidi, S.; Ben Amar, M.; Passarello, J.P.; Le Neindre, B.; Kanaev, A. Design of novel sulfated nanozirconia catalyst for biofuel synthesis. Ind. Eng. Chem. Res., 2017, 56, 1394-1403.
[http://dx.doi.org/10.1021/acs.iecr.6b03448]
[77]
Léon, C.I.S.; Song, D.; Su, F.; An, S.; Liu, H.; Gao, J.; Leng, J. Propylsulfonic acid and methyl bifunctionalized TiSBA-15 silica as an efficient heterogeneous acid catalyst for esterification and transesterification. Microporous Mesoporous Mater., 2015, 204, 218-225.
[http://dx.doi.org/10.1016/j.micromeso.2014.11.018]
[78]
Vieira, S.S.; Graça, I.; Fernandes, A.; Lopes, J.M.F.; Ribeiro, M.F.; Magriotis, Z.M. Influence of calcination temperature on catalytic; acid and textural properties of SO42-/La2O3/HZSM-5 type catalysts for biodiesel production by esterification. Microporous Mesoporous Mater., 2018, 270, 189-199.
[http://dx.doi.org/10.1016/j.micromeso.2018.05.021]
[79]
Chen, G.; Qiao, H.; Cao, J.; Wang, Z.; Ye, M.; Guo, C.Y.; Ding, P.; Wen, X. Well-dispersed sulfated mesoporous WO3/SiO2 hybrid colloidal spheres: High-efficiency catalysts for the synthesis of fatty acid alkyl esters. Fuel, 2016, 163, 41-47.
[http://dx.doi.org/10.1016/j.fuel.2015.09.029]
[80]
Alhassan, F.H.; Rashid, U.; Taufiq-Yap, Y.H. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42-/ZrO2 nanoparticle solid catalyst. Fuel, 2015, 142, 38-45.
[http://dx.doi.org/10.1016/j.fuel.2014.10.038]
[81]
Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A.F.; Wilson, K.; Rehan, M. A magnetically separable SO42-/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B, 2018, 234, 268-278.
[http://dx.doi.org/10.1016/j.apcatb.2018.04.046]
[82]
Zhang, Y.; Wong, W.T.; Yung, K.F. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour. Technol., 2013, 147, 59-64.
[http://dx.doi.org/10.1016/j.biortech.2013.07.152] [PMID: 23994306]
[83]
Zhang, Y.; Wong, W.T.; Yung, K.F. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia. Appl. Energy, 2014, 116, 191-198.
[http://dx.doi.org/10.1016/j.apenergy.2013.11.044]
[84]
Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel, 2016, 178, 253-262.
[http://dx.doi.org/10.1016/j.fuel.2016.03.059]
[85]
Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. C, 2015, 119, 26020-26028.
[http://dx.doi.org/10.1021/acs.jpcc.5b08743]
[86]
Liu, F.; Kong, W.; Wang, L.; Yi, X.; Noshadi, I.; Zheng, A.; Qi, C. Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups. Green Chem., 2015, 17, 480-489.
[http://dx.doi.org/10.1039/C4GC01052C]
[87]
Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M. Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Appl. Mater. Interfaces, 2015, 7(48), 26767-26775.
[http://dx.doi.org/10.1021/acsami.5b08797] [PMID: 26588826]
[88]
Ogino, I.; Suzuki, Y.; Mukai, S.R. Tuning the pore structure and surface properties of carbon-based acid catalysts for liquid-phase reactions. ACS Catal., 2015, 5, 4951-4958.
[http://dx.doi.org/10.1021/acscatal.5b01022]
[89]
Thushari, I.; Babel, S. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresour. Technol., 2018, 248(Pt A), 199-203.
[http://dx.doi.org/10.1016/j.biortech.2017.06.106] [PMID: 28676209]
[90]
Niu, S.; Ning, Y.; Lu, C.; Han, K.; Yu, H.; Zhou, Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers. Manage., 2018, 163, 59-65.
[http://dx.doi.org/10.1016/j.enconman.2018.02.055]
[91]
Chang, B.; Tian, Y.; Shi, W.; Liu, J.; Xi, F.; Dong, X. Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Adv, 2013, 3, 20999-21006.
[http://dx.doi.org/10.1039/c3ra43208d]
[92]
Chang, B.; Li, Y.; Guo, Y.; Yang, B. Simple fabrication of magnetically separable mesoporous carbon sphere with excellent catalytic performance for biodiesel production. J. Taiwan Inst. Chem. E, 2016, 60, 241-246.
[http://dx.doi.org/10.1016/j.jtice.2015.10.009]
[93]
D’Souza, R.; Vats, T.; Chattree, A.; Siril, P.F. Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew. Energy, 2018, 126, 1064-1073.
[http://dx.doi.org/10.1016/j.renene.2018.04.035]
[94]
Wang, Y.T.; Fang, Z.; Yang, X.X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid. Appl. Energy, 2017, 204, 702-714.
[http://dx.doi.org/10.1016/j.apenergy.2017.07.060]
[95]
Da Silva, J.M.A.; Liberto, N. Soluble and solid supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr. Org. Chem., 2016, 20, 1263-1283.
[http://dx.doi.org/10.2174/1385272819666150907193100]
[96]
Shikata, S.; Nakata, S.I.; Okuhara, T.; Misono, M. Catalysis by heteropoly compounds. 32. Synthesis of methyltert-butyl ether catalyzed by heteropolyacids supported on silica. J. Catal., 1997, 166, 263-271.
[http://dx.doi.org/10.1006/jcat.1997.1502]
[97]
Narkhede, N.; Singh, S.; Patel, A. Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem., 2015, 17, 89-107.
[http://dx.doi.org/10.1039/C4GC01743A]
[98]
Alcañiz-Monge, J.; Trautwein, G.; Parres-Esclapez, S.; Maciá-Agulló, J.A. Influence of microporosity of activated carbons as a support of polyoxometalates. Microporous Mesoporous Mater., 2008, 115, 440-446.
[http://dx.doi.org/10.1016/j.micromeso.2008.02.017]
[99]
Tao, M.; Xue, L.; Sun, Z.; Wang, S.; Wang, X.; Shi, J. Tailoring the synergistic Bronsted-Lewis acidic effects in heteropolyacid catalysts: Applied in esterification and transesterification reactions. Sci. Rep., 2015, 5, 13764.
[http://dx.doi.org/10.1038/srep13764] [PMID: 26374393]
[100]
Alhassan, F.H.; Rashid, U.; Yunus, R.; Sirat, K.; Lokman, I.M.; Taufiq-Yap, Y.H. Synthesis of ferric-manganese doped tungstated zirconia nanoparticles as heterogeneous solid superacid catalyst for biodiesel production from waste cooking oil. Int. J. Green Energy, 2015, 12, 987-994.
[http://dx.doi.org/10.1080/15435075.2014.880843]
[101]
Kulkarni, M.G.; Gopinath, R.; Meher, L.C.; Dalai, A.K. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem., 2006, 8, 1056-1062.
[http://dx.doi.org/10.1039/b605713f]
[102]
Xu, L.; Wang, Y.; Yang, X.; Yu, X.; Guo, Y.; Clark, J.H. Preparation of mesoporous polyoxometalate-tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification. Green Chem., 2008, 10, 746-755.
[http://dx.doi.org/10.1039/b803220c]
[103]
Oliveira, C.F.; Dezaneti, L.M.; Garcia, F.A.; de Macedo, J.L.; Dias, J.A.; Dias, S.C.; Alvim, K.S. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl. Catal. A Gen., 2010, 372, 153-161.
[http://dx.doi.org/10.1016/j.apcata.2009.10.027]
[104]
Alcañiz-Monge, J.; El Bakkali, B.; Trautwein, G.; Reinoso, S. Zirconia- supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl. Catal. B, 2018, 224, 194-203.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.066]
[105]
Su, F.; An, S.; Song, D.; Zhang, X.; Lu, B.; Guo, Y. Heteropoly acid and ZrO2 bifunctionalized organosilica hollow nanospheres for esterification and transesterification. J. Mater. Chem. A, 2014, 2, 14127-14138.
[http://dx.doi.org/10.1039/C4TA02257B]
[106]
Zhang, D.Y.; Duan, M.H.; Yao, X.H.; Fu, Y.J.; Zu, Y.G. Preparation of a novel cellulose-based immobilized heteropoly acid system and its application on the biodiesel production. Fuel, 2016, 172, 293-300.
[http://dx.doi.org/10.1016/j.fuel.2015.12.020]
[107]
Ngu, T.A.; Li, Z. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chem., 2014, 16, 1202-1210.
[http://dx.doi.org/10.1039/c3gc41379a]
[108]
Zhang, Z.; Zaworotko, M.J. Template-directed synthesis of metal-organic materials. Chem. Soc. Rev., 2014, 43(16), 5444-5455.
[http://dx.doi.org/10.1039/C4CS00075G] [PMID: 24831589]
[109]
Wang, C.; Zhang, T.; Lin, W. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem. Rev., 2012, 112(2), 1084-1104.
[http://dx.doi.org/10.1021/cr200252n] [PMID: 22070202]
[110]
Nikseresht, A.; Daniyali, A.; Ali-Mohammadi, M.; Afzalinia, A.; Mirzaie, A. Ultrasound-assisted biodiesel production by a novel composite of Fe(III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem., 2017, 37, 203-207.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.011] [PMID: 28427624]
[111]
Liu, Y.; Liu, S.; He, D.; Li, N.; Ji, Y.; Zheng, Z.; Luo, F.; Liu, S.; Shi, Z.; Hu, C. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc., 2015, 137(39), 12697-12703.
[http://dx.doi.org/10.1021/jacs.5b08273] [PMID: 26387862]
[112]
Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37(1), 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[113]
Khiratkar, A.G.; Balinge, K.R.; Patle, D.S.; Krishnamurthy, M.; Cheralathan, K.K.; Bhagat, P.R. Transesterification of castor oil using benzimidazolium based Brønsted acid ionic liquid catalyst. Fuel, 2018, 231, 458-467.
[http://dx.doi.org/10.1016/j.fuel.2018.05.127]
[114]
Zhang, P.; Sun, Y.; Zhang, Q.; Guo, Y.; Song, D. Upgrading of pyrolysis biofuel via esterification of acetic acid with benzyl alcohol catalyzed by Brønsted acidic ionic liquid functionalized ethyl-bridged organosilica hollow nanospheres. Fuel, 2018, 228, 175-186.
[http://dx.doi.org/10.1016/j.fuel.2018.04.107]
[115]
Leng, Y.; Wang, J.; Zhu, D.; Ren, X.; Ge, H.; Shen, L. Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification. Angew. Chem. Int. Ed. Engl., 2009, 48(1), 168-171.
[http://dx.doi.org/10.1002/anie.200803567] [PMID: 19053112]
[116]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Xu, C.C.; Yang, S. Magnetically recyclable basic polymeric ionic liquids for efficient transesterification of Firmiana platanifolia Lf oil into biodiesel. Energy Convers. Manage., 2017, 153, 462-472.
[http://dx.doi.org/10.1016/j.enconman.2017.10.023]
[117]
Zhang, J.; Zhang, S.; Han, J.; Hu, Y.; Yan, R. Uniform acid poly ionic liquid-based large particle and its catalytic application in esterification reaction. Chem. Eng. J., 2015, 271, 269-275.
[http://dx.doi.org/10.1016/j.cej.2015.02.093]
[118]
Lu, D.; Zhao, J.; Leng, Y.; Jiang, P.; Zhang, C. Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catal. Commun., 2016, 83, 27-30.
[http://dx.doi.org/10.1016/j.catcom.2016.05.004]
[119]
Wu, Z.; Li, Z.; Wu, G.; Wang, L.; Lu, S.; Wang, L.; Wan, H.; Guan, G. Brønsted acidic ionic liquid modified magnetic nanoparticle: An efficient and green catalyst for biodiesel production. Ind. Eng. Chem. Res., 2014, 53, 3040-3046.
[http://dx.doi.org/10.1021/ie4040016]
[120]
Feng, Y.; Li, L.; Wang, X.; Yang, J.; Qiu, T. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel. Energy Convers. Manage., 2017, 153, 649-658.
[http://dx.doi.org/10.1016/j.enconman.2017.10.018]
[121]
Han, M.; Gu, Z.; Chen, C.; Wu, Z.; Que, Y.; Wang, Q.; Guan, G. Efficient confinement of ionic liquids in MIL-100 (Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Adv, 2016, 6, 37110-37117.
[http://dx.doi.org/10.1039/C6RA00579A]
[122]
Wu, Z.; Chen, C.; Wan, H.; Wang, L.; Li, Z.; Li, B.; Guo, Q.; Guan, G. Fabrication of magnetic NH2-MIL-88B (Fe) confined Brønsted ionic liquid as an efficient catalyst in biodiesel synthesis. Energy Fuels, 2016, 30, 10739-10746.
[http://dx.doi.org/10.1021/acs.energyfuels.6b01212]
[123]
Wan, H.; Chen, C.; Wu, Z.; Que, Y.; Feng, Y.; Wang, W.; Wang, L.; Guan, G.; Liu, X. Encapsulation of heteropolyanion‐based ionic liquid within the metal–organic framework MIL‐100 (Fe) for biodiesel production. ChemCatChem, 2015, 7, 441-449.
[http://dx.doi.org/10.1002/cctc.201402800]
[124]
Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly (ionic liquid)s: An update. Prog. Polym. Sci., 2013, 38, 1009-1036.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.04.002]
[125]
Liang, X. Novel ionic liquid supported on a magnetic core and its catalytic activities. Ind. Eng. Chem. Res., 2014, 53, 17325-17332.
[http://dx.doi.org/10.1021/ie502681w]
[126]
Wu, Z.; Chen, C.; Wang, L.; Wan, H.; Guan, G. Magnetic material grafted poly (phosphotungstate-based acidic ionic liquid) as efficient and recyclable catalyst for esterification of oleic acid. Ind. Eng. Chem. Res., 2016, 55, 1833-1842.
[http://dx.doi.org/10.1021/acs.iecr.5b02906]
[127]
Tacias-Pascacio, V.G.; Virgen-Ortíz, J.J.; Jiménez-Pérez, M.; Yates, M.; Torrestiana-Sanchez, B.; Rosales-Quintero, A.; Fernandez-Lafuente, R. Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel, 2017, 200, 1-10.
[http://dx.doi.org/10.1016/j.fuel.2017.03.054]
[128]
Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev., 2016, 57, 496-504.
[http://dx.doi.org/10.1016/j.rser.2015.12.101]
[129]
Jiang, W.; Wang, X.; Yang, J.; Han, H.; Li, Q.; Tang, J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. J. Colloid Interface Sci., 2018, 514, 102-107.
[http://dx.doi.org/10.1016/j.jcis.2017.12.025] [PMID: 29247821]
[130]
Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Convers. Manage., 2018, 159, 42-53.
[http://dx.doi.org/10.1016/j.enconman.2018.01.021]
[131]
Bandikari, R.; Qian, J.; Baskaran, R.; Liu, Z.; Wu, G. Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol. Bioresour. Technol., 2018, 249, 354-360.
[http://dx.doi.org/10.1016/j.biortech.2017.09.156] [PMID: 29055211]
[132]
Vahidi, A.K.; Yang, Y.; Ngo, T.P.; Li, Z. Simple and efficient immobilization of extracellular His-tagged enzyme directly from cell culture supernatant as active and recyclable nanobiocatalyst: high-performance production of biodiesel from waste grease. ACS Catal., 2015, 5, 3157-3161.
[http://dx.doi.org/10.1021/acscatal.5b00550]
[133]
Rafiei, S.; Tangestaninejad, S.; Horcajada, P.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Kardanpour, R.; Zadehahmadi, F. Efficient biodiesel production using a lipase@ ZIF-67 nanobioreactor. Chem. Eng. J., 2018, 334, 1233-1241.
[http://dx.doi.org/10.1016/j.cej.2017.10.094]
[134]
Sajjadi, B.; Abdul Raman, A.A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev., 2016, 63, 62-92.
[http://dx.doi.org/10.1016/j.rser.2016.05.035]

© 2024 Bentham Science Publishers | Privacy Policy