Skip to main content
Log in

Lifting, n-dimensional spectral resolutions, and n-dimensional observables

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We show that under some natural conditions, we are able to lift an n-dimensional spectral resolution from one monotone \(\sigma \)-complete unital po-group into another one, when the first one is a \(\sigma \)-homomorphic image of the second one. We note that an n-dimensional spectral resolution is a mapping from \(\mathbb R^n\) into a quantum structure which is monotone, left-continuous with non-negative increments and which is going to 0 if one variable goes to \(-\infty \) and it goes to 1 if all variables go to \(+\infty \). Applying this result to some important classes of effect algebras including also MV-algebras, we show that there is a one-to-one correspondence between n-dimensional spectral resolutions and n-dimensional observables on these effect algebras which are a kind of \(\sigma \)-homomorphisms from the Borel \(\sigma \)-algebra of \({\mathbb {R}}^n\) into the quantum structure. An important used tool are two forms of the Loomis–Sikorski theorem which use two kinds of tribes of fuzzy sets. In addition, we show that we can define three different kinds of n-dimensional joint observables of n one-dimensional observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  3. Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis-Sikorski representation of monotone \(\sigma \)-complete effect algebras. Fuzzy Sets Syst. 157, 683–690 (2006)

    Article  MathSciNet  Google Scholar 

  4. Catlin, D.: Spectral theory in quantum logics. Int. J. Theor. Phys. 1, 285–297 (1968)

    Article  MathSciNet  Google Scholar 

  5. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ, Dordrecht (2000)

    Book  Google Scholar 

  6. Di Nola, A., Dvurečenskij, A.: Product MV-algebras. Multi. Val. Logic 6, 193–215 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Di Nola, A., Dvurečenskij, A., Lenzi, G.: Observables on perfect MV-algebras. Fuzzy Sets Syst. 369, 57–81 (2019). https://doi.org/10.1016/j.fss.2018.11.018

    Article  MathSciNet  MATH  Google Scholar 

  8. Dvurečenskij, A.: Loomis-Sikorski theorem for \(\sigma \)-complete MV-algebras and \(\ell \)-groups. J. Austral. Math. Soc. Ser. A 68, 261–277 (2000)

    Article  MathSciNet  Google Scholar 

  9. Dvurečenskij, A., Kuková, M.: Observables on quantum structures. Inf. Sci. 262, 215–222 (2014). https://doi.org/10.1016/j.ins.2013.09.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Dvurečenskij, A., Lachman, D.: Two-dimensional observables and spectral resolutions. Rep. Math. Phys. 85, 163–191 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dvurečenskij, A., Lachman, D.: Spectral resolutions and quantum observables. Inter. J. Theor. Phys

  12. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ, Dordrecht (2000)

    Book  Google Scholar 

  13. Foulis, D.J., Bennett, D.J.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1325–1346 (1994)

    Article  MathSciNet  Google Scholar 

  14. Fremlin, D.H.: Measure Theory Vol. 3, Measure Algebras. Torres Fremlin, 25 Ireton Road, Colchester CO3 3AT, England (2002)

  15. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. Mathematical Surveys and Monographs 20. American Mathematical Society, Providence (1986)

    Google Scholar 

  16. Greechie, R.: Orthomodular lattices admitting no states. J. Combin. Theor. 10, 119–132 (1971)

    Article  MathSciNet  Google Scholar 

  17. Jenčová, A., Pulmannová, S., Vinceková, E.: Observables on \(\sigma \)-MV-algebras and \(\sigma \)-lattice effect algebras. Kybernetika 47, 541–559 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)

    MATH  Google Scholar 

  19. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Co., Amsterdam (1971)

    MATH  Google Scholar 

  20. Maharam, D.: On a theorem of von Neumann. Proc. Am. Math. Soc. 9, 987–994 (1958)

    Article  MathSciNet  Google Scholar 

  21. Mundici, D.: Interpretation of AF \(C^*\)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)

    Article  MathSciNet  Google Scholar 

  22. Mundici, D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv. Appl. Math. 22, 227–248 (1999)

    Article  MathSciNet  Google Scholar 

  23. Ravindran, K.: On a structure theory of effect algebras. PhD thesis, Kansas State Univ., Manhattan, Kansas (1996)

  24. Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  25. Riečanová, Z.: Generalization of blocks for D-lattice and lattice ordered effect algebras. Int. J. Theor. Phys. 39, 231–237 (2000)

    Article  MathSciNet  Google Scholar 

  26. Varadarajan, V.S.: Geometry of Quantum Theory, vol. 1. Van Nostrand, Princeton (1968)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolij Dvurečenskij.

Additional information

Presented by S. Pulmannova.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper has been supported by the grant of the Slovak Research and Development Agency under contract APVV-16-0073 and the grant VEGA No. 2/0142/20 SAV, AD, and by grant CZ.02.2.69/0.0/0.0/16-027/0008482 SPP 8197200115, DL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvurečenskij, A., Lachman, D. Lifting, n-dimensional spectral resolutions, and n-dimensional observables. Algebra Univers. 81, 34 (2020). https://doi.org/10.1007/s00012-020-00664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-00664-8

Keywords

Mathematics Subject Classification

Navigation