Skip to main content
Log in

Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination

  • PHYSICAL CHEMISTRY OF WATER TREATMENT PROCESSES
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

Polyethyleneimine (PEI)-polyacrylonitrile (PAN)-cellulose membrane (PEI-PAN cellulose membrane) was developed by immobilizing PEI onto PAN coated cellulose support via electrostatic force to be used for determination of Cu(II) by colorimetric method. The membrane was prepared in two-step process, in which 4% PAN solution was prepared and coated onto the membrane via filtration method, followed by the immersion of the dried PAN-cellulose membrane in the 2% PEI solution. The morphologies of the PEI-PAN membranes were investigated with field emission scanning electron microscope. The results confirmed the presence of a coated layer on the surface. Infrared spectra of before and after coated samples were obtained by Fourier transform infrared (FTIR) spectroscope. The results showed that there were NH2 functional group of PAN and PEI with their characteristic transmittance peaks. Determination at the parts per million level of Cu(II) (0.5–2.0 mg L–1) was achieved by filtration of a sample solution and simultaneous colorimetric analysis using a UV-Vis spectrophotometer (at 650 nm). Cu(II) ion formed the light blue cupramine complex with PEI immobilized on the membrane by filtration of a 50 mL sample solution buffered with 0.01 M dihydrogen phosphate (pH 7). Energy dispersive X-Ray fluorescence spectrum of the Cu(II) detected membrane confirmed the capability of Cu(II) extraction of the PEI-PAN cellulose membrane from the water samples. The detection limit of the Cu(II) determination by this method was found to be 0.27 mg L–1. The accuracy and precision of the method were estimated by Cu(II) determination at 0.5 and 2 mg L–1 of Cu(II) solutions and the results were accurate with above 89% recovery percentage and below 5.5% relative standard deviation. Interference ions were studied and found that Fe(III) and Zn(II) slightly interfered with the Cu(II) determination. The present method was tested for the detection of treated textile wastewater and tap water spiked with 2 mg L–1 of Cu(II). The test results were acceptable and good to determine wastewater prior to discharge into the environment that could be applied for on-site monitoring of Cu(II) in treated wastewater by filtration detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Angelova, M., Asenova, S., Nedkova, V., and Koleva-Kolarova, R., Copper in the human organism, Trakia J. Sci., 2011, vol. 9, no. 1, pp. 88–98.

    Google Scholar 

  2. Uauy, R., Olivares, M., and Gonzalez, M., Essentiality of copper in humans, Am. J. Clin. Nutr., 1998, vol. 67, no. 5, pp. 952–959.

    Article  Google Scholar 

  3. Thiele, D.J. and Gitlin, J.D., Assembling the pieces, Nat. Chem. Biol., 2008, vol. 4, no. 3, pp. 145–147.

    Article  CAS  Google Scholar 

  4. Robinson, N.J. and Winge, D.R., Copper metallochaperones, Annu. Rev. Biochem., 2010, vol. 79, pp. 537–562.

    Article  CAS  Google Scholar 

  5. Mathie, A., Sutton, G.L., Clarke, C.E., and Veale, E.L., Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability, Pharmacol. Ther., 2006, vol. 111, no. 3, pp. 567–583.

    Article  CAS  Google Scholar 

  6. Madsen, E. and Gitlin, J.D., Copper and iron disorders of the brain, Annu. Rev. Neurosci., 2007, vol. 30, pp. 317–337.

    Article  CAS  Google Scholar 

  7. Hirayama, T., van de Bittner, G.C., Gray, L.W., Lutsenko, S., and Chang, C.J., Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 7, pp. 2228–2233.

    Article  CAS  Google Scholar 

  8. Lee, J.C., Gray, H.B., and Winkler, J.R., Copper(II) binding to α-synuclein, the Parkinson’s protein, J. Am. Chem. Soc., 2008, vol. 130, no. 22, pp. 6898–6899.

    Article  Google Scholar 

  9. Chelly, J., Tümer, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, V., Horn, N., and Monaco, A.P., Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein, Nat. Genet., 1993, vol. 3, no. 1, pp. 14–19.

    Article  CAS  Google Scholar 

  10. Kaler, S.G., ATP7A-related copper transport diseases—emerging concepts and future trends, Nat. Rev. Neurol., 2011, vol. 7, no. 1, pp. 15–29.

    Article  CAS  Google Scholar 

  11. Goncharuk, V.V., SOS: drinking water, J. Water Chem. Technol., 2010, vol. 32, no. 5, pp. 255–283.

    Article  Google Scholar 

  12. Guidelines for Drinking-water Quality, Geneva: World Health Org., 1996.

  13. Aragay, G., Pons, J., and Merkoci, A., Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev., 2011, vol. 111, no. 5, pp. 3433–3458.

    Article  CAS  Google Scholar 

  14. Duong, T.Q. and Kim, J.S., Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens, Chem. Rev., 2010, vol. 110, no. 10, pp. 6280–6301.

    Article  Google Scholar 

  15. Formica, M., Fusi, V., Giorgi, L., and Micheloni, M., New fluorescent chemosensors for metal ions in solution, Coord. Chem. Rev., 2012, vol. 256, nos. 1–2, pp. 170–192.

  16. Narayanaswamy, N. and Govindaraju, T., Aldazine-based colorimetric sensors for Cu2+ and Fe3+, Sens. Actuators, B, 2012, vol. 161, no. 1, pp. 304–310.

    Article  CAS  Google Scholar 

  17. Chandrasekhar, V., Das, S., Yadav, R., Hossain, S., Parihar, R., Subramaniam, G., and Sen, P., Novel chemosensor for the visual detection of copper(II) in aqueous solution at the ppm level, Inorg. Chem., 2012, vol. 51, no. 16, pp. 8664–8666.

    Article  CAS  Google Scholar 

  18. Wang, H., Yang, L., Zhang, W., Zhou, Y., Zhao, B., and Li, X., A colorimetric probe for copper(II) ion based on 4-amino-1, 8-naphthalimide, Inorg. Chim. Acta, 2012, vol. 381, pp. 111–116.

    Article  CAS  Google Scholar 

  19. Meucci, V., Laschi, S., Minunni, M., Pretti, C., Intorre, L., Soldani, G., and Mascini, M., An optimized digestion method coupled to electrochemical sensor for the determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping voltammetry, Talanta, 2009, vol. 77, no. 3, pp. 1143–1148.

    Article  CAS  Google Scholar 

  20. Oztekin, Y., Ramanaviciene, A., and Ramanavicius, A., Electrochemical copper (II) sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate, Sens. Actuators, B, 2011, vol. 155, no. 2, pp. 612–617.

    Article  CAS  Google Scholar 

  21. Shirmardi-Dezaki, A., Shamsipur, M., Akhond, M., Sharghi, H., and Doroodmand, M.M., Array of potentiometric sensors for simultaneous determination of copper, silver, and cadmium ions in complex mixtures, Electrochim. Acta, 2012, vol. 62, pp. 84–90.

    Article  CAS  Google Scholar 

  22. Chmilenko, F.A., Mikulenko, O.V., Chmilenko, T.S., and Matorina, E.V., Spectrophotometric determination of Cu(II) in water with phenylfluorone in the presence of polyvinylpyrrolidone and inorganic electrolytes, J. Water Chem. Technol., 2007, vol. 29, no. 3, pp. 139–143.

    Article  Google Scholar 

  23. Wan, L., Wang, X., Zhu, W., Zhang, C., Song, A., Sun, C., Jiang, T., and Wang, S., Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel, Int. J. Pharm., 2015, vol. 484, nos. 1–2, pp. 207–216.

  24. Alavi, S.J., Khalili, N., Oskuee, R.K., Verma, K.D., and Darroudi, M., Role of polyethyleneimine (PEI) in synthesis of zinc oxide nanoparticles and their cytotoxicity effects, Ceram. Int., 2015, vol. 41, no. 8, pp. 10222–10226.

    Article  CAS  Google Scholar 

  25. Kislenko, V.N. and Oliynyk, L.P., Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions, J. Polym. Sci., 2002, vol. 40, no. 7, pp. 914–922.

    Article  CAS  Google Scholar 

  26. Navarro, R.R., Sumi, K., Fujii, N., and Matsumura, M., Mercury removal from wastewater using porous cellulose carrier modified with polyethyleneimine, Water Res., 1996, vol. 30, no. 10, pp. 2488–2494.

    Article  CAS  Google Scholar 

  27. Wen, T., Qu, F., Li, N.B., and Luo, N.Q., A facile, sensitive, and rapid spectrophotometric method for copper(II) ion detection in aqueous media using polyethyleneimine, Arab. J. Chem., 2017, vol. 10, pp. 1680–1685.

    Article  Google Scholar 

  28. Xu, J., Feng, X., Chen, P., and Gao, C., Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane, J. Membr. Sci., 2012, vol. 413–414, pp. 62–69.

  29. Jamil, S.N.A.M., Daik, R., and Ahmad, I., Synthesis and thermal properties of acrylonitrile/butyl acrylate/fumaronitrile and acrylonitrile/ethyl hexyl acrylate/fumaronitrile terpolymers as a potential precursor for carbon fiber, Materials (Basel), 2014, vol. 7, no. 9, pp. 6207–6223.

    Article  Google Scholar 

  30. Wang, F., Liu, P., Nie, T., Wei, H., and Cui, Z., Characterization of a polyamine microsphere and its adsorption for protein, Int. J. Mol. Sci., 2013, vol. 14, no. 1, pp. 17–29.

    Article  CAS  Google Scholar 

  31. Gao, H.W., Chen, F.F., Chen, L., Zeng, T., Pan, L.T., Li, J.H., and Luo, H.F., A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue, Anal. Chim. Acta, 2007, vol. 587, no. 1, pp. 52–59.

    Article  CAS  Google Scholar 

  32. Dzyazko, Yu.S., Rozhdestvenska, L.M., Palchik, A.V., and Lapicque, F., Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers, Sep. Purif. Technol., 2005, vol. 45, no. 2, pp. 141–146.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge financial support of the P1350 193 project from the National Metal and Materials Technology Center (MTEC) of the National Science and Technology Development Agency (NSTDA), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supamas Danwittayakul.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supamas Danwittayakul, Phitchaya Muensri Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination. J. Water Chem. Technol. 42, 22–29 (2020). https://doi.org/10.3103/S1063455X20010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X20010075

Keywords:

Navigation