Skip to main content
Log in

Impact of Thermal Non-equilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid-Saturated Vertical Porous Layer with Internal Heat Sources

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The stability of natural convection in a vertical layer of heat-generating Darcy porous medium saturated with an Oldroyd-B fluid using a local thermal non-equilibrium (LTNE) model has been investigated numerically. The impermeable vertical walls of the porous layer are maintained at different uniform temperatures. As a consequence of LTNE model, two temperature equations representing the fluid and solid phases separately are used for the heat transport equation. A uniform volumetric heating in both fluid and solid phases is considered and the transfer of heat between the phases is considered in the basic state. The internal heating introduced asymmetry in the basic flow which led to the existence of competing modes. The intricacies of internal heat source strength in the fluid and the solid phases are clearly discerned on the stability of the system. The stress relaxation parameter \(\Lambda_{1}\), fluid-heat generation parameter \(Q_{f}\), solid-heat generation parameter \(Q_{s}\) and the porosity-modified conductivities ratio \(\gamma\) were found to exhibit destabilizing effect on the system, while the strain retardation parameter \(\Lambda_{2}\) shows an opposite trend even in the presence of internal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(a\) :

Vertical wave number

\(c\) :

Wave speed

\(c_{i}\) :

Growth rate

\(c_{r}\) :

Phase velocity

2d :

Thickness of the porous layer

g :

Gravitational acceleration

h :

Inter-phase heat transfer coefficient

\(H\) :

Scaled inter-phase heat transfer coefficient

k :

Thermal conductivity

K :

Permeability

\(q^{\prime\prime\prime}_{{}}\) :

Rate of heat generation per unit volume

\(Q\) :

Heat generation parameter

\(R_{D}\) :

Darcy-Rayleigh number

\(t\) :

Time

T :

Temperature

\(T_{1}\) :

Temperature of the left boundary

\(T_{2}\) :

Temperature of the right boundary

x :

Coordinate across the channel

\(z\) :

Coordinate along the channel

\(\alpha\) :

Diffusivity ratio

β :

Thermal expansion coefficient

\(\gamma\) :

Porosity-modified conductivity ratio

\(\varepsilon\) :

Porosity of the medium

\(\Theta\) :

Disturbance fluid temperature

\(\kappa\) :

Thermal diffusivity

\(\lambda _{1}\) :

Stress relaxation time constant

\(\lambda_{2}\) :

Strain retardation time constant

\(\Lambda_{1}\) :

Relaxation parameter

\(\Lambda_{2}\) :

Retardation parameter

\(\mu\) :

Fluid viscosity

\(\rho _{0}\) :

Reference density at \(T_{0}\)

\(\Phi\) :

Disturbance solid temperature

\(\psi\) :

Stream function

\(\Psi\) :

Disturbance stream function

b :

Basic state

c :

Critical state

f :

Fluid phase

s :

Solid phase

References

  • Alishaev, M.G., KhMirzadjanzade, A.: For the calculation of delay phenomenon in filtration theory. IzvestyaVuzov, Neft I Gaz. 6, 71–78 (1975)

    Google Scholar 

  • Barletta, A.: A proof that convection in a porous vertical slab may be unstable. J. Fluid Mech. 770, 273–288 (2015)

    Article  Google Scholar 

  • Barletta, A.: Instability of stationary two-dimensional mixed convection across a vertical porous layer. Phys. Fluids 28, 014101 (2016)

    Article  Google Scholar 

  • Barletta, A., Celli, M.: Instability of parallel buoyant flow in a vertical porous layer with an internal heat source. Int. J. Heat Mass Transf. 111, 1063–1070 (2017)

    Article  Google Scholar 

  • Barletta, A., de Alves, B.L.S.: On Gill’s stability problem for non-Newtonian Darcy’s flow. Int. J. Heat Mass Transf. 79, 759–768 (2014)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, Hoboken (2007)

    Google Scholar 

  • Celli, M., Barletta, A., Rees, D.A.S.: Local thermal non-equilibrium analysis of the instability in a vertical porous slab with permeable sidewalls. Transp. Porous Med. 119, 539–553 (2017)

    Article  Google Scholar 

  • Di Federico, V., Pinelli, M., Ugarelli, R.: Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media. Stochastic Environ. Res. Risk Assess. 24, 1067–1076 (2010)

    Article  Google Scholar 

  • Gasser, R.D., Kazimi, M.S.: Onset of convection in a porous medium with internal heat generation. ASME J. Heat Transf. 98, 49–54 (1976)

    Article  Google Scholar 

  • Gill, A.E.: A proof that convection in a porous vertical slab is stable. J. Fluid Mech. 35, 545–547 (1969)

    Article  Google Scholar 

  • Hirata, S.C., de Alves, B.L.S., Delenda, N., Ouarzazi, M.N.: Convective and absolute instabilities in Rayleigh–Bénard–Poiseuille mixed convection for viscoelastic fluids. J. Fluid Mech. 765, 167–210 (2015)

    Article  Google Scholar 

  • Khalili, A., Shivakumara, I.S.: Onset of convection in a porous layer with net through-flow and internal heat generation. Phys. Fluids 10, 315–317 (1998)

    Article  Google Scholar 

  • Khuzhayorov, B., Auriault, J.L., Royer, P.: Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media. Int. J. Eng. Sci. 38, 487–504 (2000)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: The effect of strong heterogeneity on the onset of convection induced by internal heating in a porous medium: a layered model. Transp. Porous Med. 99, 85–100 (2013)

    Article  Google Scholar 

  • Kwok, L.P., Chen, C.F.: Stability of thermal convection in a vertical porous layer. ASME J. Heat Transf. 109, 889–893 (1987)

    Article  Google Scholar 

  • Minkowycz, W.J., Haji-Sheikh, A., Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transf. 42, 3373–3385 (1999)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, New York (2017)

    Book  Google Scholar 

  • Nield, D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Med. 1, 181–186 (1998)

    Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: Onset of convection with internal heating in a weakly heterogeneous porous medium. Transp. Porous Med. 98, 543–552 (2013)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal porous layer with spatially non-uniform internal heating. Transp. Porous Med. 111, 541–553 (2016)

    Article  Google Scholar 

  • Nouri-Borujerdi, A., Noghrehabadi, A.R., Rees, D.A.S.: Onset of convection in a horizontal porous channel with uniform heat generation using a thermal nonequilibrium model. Transp. Porous Med. 69, 343–357 (2007)

    Article  Google Scholar 

  • Qin, Y., Kaloni, P.N.: A nonlinear stability problem of convection in a porous vertical slab. Phys. Fluids. 5, 2067–2069 (1993)

    Article  Google Scholar 

  • Rees, D.A.S.: The stability of Prandtl-Darcy convection in a vertical porous slot. Int. J. Heat Mass Transf. 31, 1529–1534 (1988)

    Article  Google Scholar 

  • Rees, D.A.S.: The effect of local thermal nonequilibrium on the stability of convection in a vertical porous channel. Transp. Porous Med. 87, 459–464 (2011)

    Article  Google Scholar 

  • Rees, D.A.S., Pop, I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds.) Transport phenomena in porous media III, pp. 147–153. Elsevier, Oxford (2005)

    Chapter  Google Scholar 

  • Rees, D.A.S., Stetsyuk, V.: Translation of “For the calculation of delay phenomena in filtration theory”. ResearchGate (2018).

  • Scott, N.L., Straughan, B.: A nonlinear stability analysis of convection in a porous vertical channel including local thermal nonequilibrium. J. Math. Fluid Mech. 15, 171–178 (2013)

    Article  Google Scholar 

  • Shankar, B.M., Shivakumara, I.S.: On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid. Theor. Comput. Fluid Dyn. 31, 221–231 (2017a)

    Article  Google Scholar 

  • Shankar, B.M., Shivakumara, I.S.: Effect of local thermal nonequilibrium on the stability of natural convection in an Oldroyd-B fluid saturated vertical porous layer. ASME J. Heat Transf. (2017b).https://doi.org/10.1115/1.4035199

    Article  Google Scholar 

  • Shankar, B.M., Shivakumara, I.S.: Stability of penetrative Natural convection in a non-Newtonian fluid-saturated vertical porous layer. Transp. Porous Med. 124, 395–411 (2018)

    Article  Google Scholar 

  • Shankar, B.M., Kumar, J., Shivakumara, I.S.: Stability of natural convection in a vertical layer of Brinkman porous medium. Acta Mech. 228, 1–19 (2017)

    Article  Google Scholar 

  • Shenoy, A.V.: Non-newtonian fluid heat transfer in porous media. Adv. Heat Transf. 24, 101–190 (1994)

    Article  Google Scholar 

  • Straughan, B.: A nonlinear analysis of convection in a porous vertical slab. Geophys. Astrophys. Fluid Dyn. 42, 269–275 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Professor D.A.S. Rees, and Professor Stetsyuk for providing the English translated version of the paper of Alishaev and Mirzadjanzade (1975). We thank the referees for their most valuable comments that helped us to modify the paper to the present form. The authors are grateful to their respective institutes of working for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Shankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, B.M., Shivakumara, I.S. & Naveen, S.B. Impact of Thermal Non-equilibrium on the Stability of Natural Convection in an Oldroyd-B Fluid-Saturated Vertical Porous Layer with Internal Heat Sources. Transp Porous Med 133, 437–458 (2020). https://doi.org/10.1007/s11242-020-01431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01431-y

Keywords

Navigation