Skip to main content
Log in

A Kinetic Model for Chelating Extraction of Metals from Spent Hydrodesulphurization Catalyst by Complexing Agent

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this present paper, chelating extraction of metals from spent hydrodesulphurization catalyst was carried out using ethylene diamine tetraacetic acid as complexing agent. Mo, Ni and Co metals were precipitated in ammonium molybdate, nickel dimethylglyoxime and cobalt hydroxide forms at pH:2, pH:6 and pH:10, respectively. The highest metal extraction yields (90.22% Mo, 96.71% Co, 95.31% Ni and 19.98% Al) were achieved under optimum process conditions. The activation energy values (Ea) of Co, Mo and Ni were calculated as 14.36 kJ/mol, 16.85 kJ/mol and 15.93 kJ/mol, respectively. It was determined that leaching kinetics fitted to the pseudo-first homogenous model and the chelating process was controlled by diffusion mechanism. In the light of the kinetic data, the kinetic equation including the process parameters was obtained as follows: \(\ln \left( {1 - x} \right) = 1.217 \times 10^{ - 4} [(C_{A} )^{1.068} \left( D \right)^{ - 0.929} (K/S)^{ - 0.850} (R)^{0.185} \exp ( - 6462.6/T)] t\). The results provided a new approach both for reducing the solid waste load of the petrochemical industry and for efficient recovery of metals from the spent hydrodesulphurization catalyst using EDTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Akcil, F. Vegliò, F. Ferella, M. D. Okudan, and A. Tuncuk, Waste Manag. 45, 420 (2015).

    CAS  Google Scholar 

  2. M. Marafi and A. Stanislaus, Resour. Conserv. Recycl. 52, 859 (2008).

    Google Scholar 

  3. M. Marafi and A. Stanislaus, Resour. Conserv. Recycl. 53, 1 (2008).

    Google Scholar 

  4. P. Dufresne, Appl. Catal. A Gen. 322, 67 (2007).

    CAS  Google Scholar 

  5. C. Liu, Y. Yu, and H. Zhao, Fuel Process. Technol. 86, 449 (2005).

    CAS  Google Scholar 

  6. L. E. Macaskie, I. P. Mikheenko, P. Yong, K. Deplanche, A. J. Murray, M. Paterson-Beedle, V. S. Coker, C. I. Pearce, R. Cutting, and R. A. D. Pattrick, Hydrometallurgy 104, 483 (2010).

    CAS  Google Scholar 

  7. A. Marafi, S. Fukase, M. Al-Marri, and A. Stanislaus, Energy & Fuels 17, 661 (2003).

    CAS  Google Scholar 

  8. H. Srichandan, S. Singh, K. Blight, A. Pathak, D. J. Kim, S. Lee, and S. W. Lee, Int. J. Miner. Process. 134, 66 (2015).

    CAS  Google Scholar 

  9. M. Motaghed, S. M. Mousavi, S. O. Rastegar, and S. A. Shojaosadati, Bioresour. Technol. 171, 401 (2014).

    CAS  Google Scholar 

  10. J. Ramos-Cano, G. González-Zamarripa, F. R. Carrillo-Pedroza, M. de Jesús Soria-Aguilar, A. Hurtado-Macías, and A. Cano-Vielma, Int. J. Miner. Process. 148, 41 (2016).

    CAS  Google Scholar 

  11. S. Huang, J. Liu, C. Zhang, B. Hu, X. Wang, M. Wang, and X. Wang, JOM 71, 4681 (2019).

    CAS  Google Scholar 

  12. N. Nagar, H. Garg, and C. S. Gahan, Biocatal. Agric. Biotechnol. 20, 101252 (2019).

    Google Scholar 

  13. S. Vyas and Y.-P. Ting, Chemosphere 160, 7 (2016).

    CAS  Google Scholar 

  14. B. B. Kar, P. Datta, and V. N. Misra, Hydrometallurgy 72, 87 (2004).

    CAS  Google Scholar 

  15. B. B. Kar, B. V. R. Murthy, and V. N. Misra, Int. J. Miner. Process. 76, 143 (2005).

    CAS  Google Scholar 

  16. M. H. Shariat, N. Setoodeh, and R. A. Dehghan, Miner. Eng. 14, 815 (2001).

    CAS  Google Scholar 

  17. D. D. Sun, J. H. Tay, H. K. Cheong, D. L. K. Leung, and G. Qian, J. Hazard. Mater. 87, 213 (2001).

    CAS  Google Scholar 

  18. D. Mishra, D.-J. Kim, J.-G. Ahn, and Y.-H. Rhee, Met. Mater. Int. 11, 249 (2005).

    CAS  Google Scholar 

  19. G. Chauhan, K. K. Pant, and K. D. P. Nigam, Ind. Eng. Chem. Res. 52, 16724 (2013).

    CAS  Google Scholar 

  20. D. Mishra, G. R. Chaudhury, D. J. Kim, and J. G. Ahn, Hydrometallurgy 101, 35 (2010).

    CAS  Google Scholar 

  21. W. Mulak, A. Szymczycha, A. Lesniewicz, and W. Zyrnicki, Physicochem. Probl. Miner. Process. 40, 69 (2006).

    CAS  Google Scholar 

  22. K. Mazurek, K. Białowicz, and M. Trypuć, Hydrometallurgy 103, 19 (2010).

    CAS  Google Scholar 

  23. F. Beolchini, V. Fonti, F. Ferella, and F. Vegliò, J. Hazard. Mater. 178, 529 (2010).

    CAS  Google Scholar 

  24. Y.-C. Lai, W.-J. Lee, K.-L. Huang, and C.-M. Wu, J. Hazard. Mater. 154, 588 (2008).

    CAS  Google Scholar 

  25. I. M. Valverde Jr, J. F. Paulino, and J. C. Afonso, J. Hazard. Mater. 160, 310 (2008).

    CAS  Google Scholar 

  26. K. H. Park, D. Mohapatra, and B. R. Reddy, J. Hazard. Mater. 138, 311 (2006).

    CAS  Google Scholar 

  27. D. Santhiya and Y.-P. Ting, J. Biotechnol. 121, 62 (2006).

    CAS  Google Scholar 

  28. K. H. Park, B. R. Reddy, D. Mohapatra, and C.-W. Nam, Int. J. Miner. Process. 80, 261 (2006).

    CAS  Google Scholar 

  29. D. Santhiya and Y.-P. Ting, J. Biotechnol. 116, 171 (2005).

    CAS  Google Scholar 

  30. S. P. Barik, K.-H. Park, P. K. Parhi, and J. T. Park, Hydrometallurgy 111, 46 (2012).

    Google Scholar 

  31. H. Arslanoğlu and A. Yaraş, Pet. Sci. Technol. 1 (2019).

  32. H.-I. Kim, K.-H. Park, and D. Mishra, Hydrometallurgy 98, 192 (2009).

    CAS  Google Scholar 

  33. A. J. Chaudhary, J. D. Donaldson, S. C. Boddington, and S. M. Grimes, Hydrometallurgy 34, 137 (1993).

    CAS  Google Scholar 

  34. A. Szymczycha-Madeja, J. Hazard. Mater. 186, 2157 (2011).

    CAS  Google Scholar 

  35. T. E. Norgate, S. Jahanshahi, and W. J. Rankin, J. Clean. Prod. 15, 838 (2007).

    Google Scholar 

  36. G. Chauhan, K. K. Pant, and K. D. P. Nigam, Environ. Sci. Process. Impacts 17, 12 (2015).

    CAS  Google Scholar 

  37. J. Yang, Q. Zeng, L. Peng, M. Lei, H. Song, B. Tie, and J. Gu, J. Environ. Sci. 25, 413 (2013).

    CAS  Google Scholar 

  38. S. Zhang, Z. Yang, B. Wu, Y. Wang, R. Wu, and Y. Liao, CLEAN–Soil, Air, Water 42, 641 (2014).

    CAS  Google Scholar 

  39. A. C. Garrabrants and D. S. Kosson, Waste Manag. 20, 155 (2000).

    CAS  Google Scholar 

  40. D. C. W. Tsang, W. Zhang, and I. M. C. Lo, Chemosphere 68, 234 (2007).

    CAS  Google Scholar 

  41. W. Zhang, D. C. W. Tsang, and I. M. C. Lo, Chemosphere 66, 2025 (2007).

    CAS  Google Scholar 

  42. W. Xia, H. Gao, X. Wang, C. Zhou, Y. Liu, T. Fan, and X. Wang, J. Hazard. Mater. 164, 936 (2009).

    CAS  Google Scholar 

  43. W. Zhang, L. Tong, Y. Yuan, Z. Liu, H. Huang, F. Tan, and R. Qiu, J. Hazard. Mater. 178, 578 (2010).

    CAS  Google Scholar 

  44. R. S. Tejowulan and W. H. Hendershot, Environ. Pollut. 103, 135 (1998).

    CAS  Google Scholar 

  45. C. E. Martınez and H. L. Motto, Environ. Pollut. 107, 153 (2000).

    Google Scholar 

  46. S. Goel, K. K. Pant, and K. D. P. Nigam, J. Hazard. Mater. 171, 253 (2009).

    CAS  Google Scholar 

  47. K. R. Vuyyuru, K. K. Pant, V. V Krishnan, and K. D. P. Nigam, Ind. Eng. Chem. Res. 49, 2014 (2010).

    CAS  Google Scholar 

  48. O. Alpaslan, A. Yaras, H. Arslanoglu, Bartın Univ. J. Eng. Technol. Sci. 7, 18 (2019).

    Google Scholar 

  49. B. Nowack, Environ. Sci. Technol. 36, 4009 (2002).

    CAS  Google Scholar 

  50. T. C. M. Yip, D. C. W. Tsang, and I. M. C. Lo, Chemosphere 81, 415 (2010).

    CAS  Google Scholar 

  51. I. M. C. Lo, D. C. W. Tsang, T. C. M. Yip, F. Wang, and W. Zhang, Chemosphere 83, 7 (2011).

    CAS  Google Scholar 

  52. W. Zhang and D. C. W. Tsang, Chemosphere 91, 1281 (2013).

    CAS  Google Scholar 

  53. G. Chauhan, K. K. Pant, and K. D. P. Nigam, Ind. Eng. Chem. Res. 51, 10354 (2012).

    CAS  Google Scholar 

  54. J. Singh and B.-K. Lee, Process Saf. Environ. Prot. 99, 69 (2016).

    CAS  Google Scholar 

  55. S. Rao, T. Yang, D. Zhang, W. Liu, L. Chen, Z. Hao, Q. Xiao, and J. Wen, Hydrometallurgy 158, 101 (2015).

    CAS  Google Scholar 

  56. C. Kim, Y. Lee, and S. K. Ong, Chemosphere 51, 845 (2003).

    CAS  Google Scholar 

  57. A. Verma and S. Hait, Process Saf. Environ. Prot. 121, 1 (2019).

    CAS  Google Scholar 

  58. P. Jadhao, G. Chauhan, K. K. Pant, and K. D. P. Nigam, Waste Manag. 57, 102 (2016).

    CAS  Google Scholar 

  59. Z. Wang, S. Guo, and C. Ye, Procedia Environ. Sci. 31, 917 (2016).

    Google Scholar 

  60. M. Authier-Martin, G. Forte, S. Ostap, and J. See, JOM 53, 36 (2001).

    CAS  Google Scholar 

  61. M. Goto, B. C. Roy, and T. Hirose, J. Supercrit. Fluids 9, 128 (1996).

    CAS  Google Scholar 

  62. Kn. C. Liddell, Hydrometallurgy 79, 62 (2005).

    Google Scholar 

  63. C. Y. Wen, Ind. Eng. Chem. 60, 34 (1968).

    CAS  Google Scholar 

  64. O. Levenspiel, Inc., New York (1972).

  65. A. Ekmekyapar, E. Aktaş, A. Künkül, and N. Demirkiran, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 43, 764 (2012).

Download references

Acknowledgements

This paper was produced from Orhon ALPASLAN’s master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Yaras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpaslan, O., Yaras, A. & Arslanoğlu, H. A Kinetic Model for Chelating Extraction of Metals from Spent Hydrodesulphurization Catalyst by Complexing Agent. Trans Indian Inst Met 73, 1925–1937 (2020). https://doi.org/10.1007/s12666-020-02007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02007-6

Keywords

Navigation