Skip to main content
Log in

Photocatalytic Partial Oxidation of Tyrosol: Improving the Selectivity Towards Hydroxytyrosol by Surface Fluorination of TiO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic partial oxidation of tyrosol to hydroxytyrosol, the most powerful and expensive natural antioxidant currently known, has been studied in irradiated aqueous suspensions of TiO2 as the photocatalyst. Three TiO2 samples, two commercial (Merck and P25® Evonik) and a home prepared one, have been used bare or surface modified. The influence of surface hydroxylation, surface fluorination, and silver nanoparticles decoration on the selectivity towards hydroxytyrosol has been investigated. The higher the hydroxyl group density, the lower the selectivity. On the other hand, fluorination improved the selectivity towards hydroxytyrosol for all of the samples. In particular, selectivity values up to 10%, i.e. ca. 10 times higher than those obtained with bare sample, were obtained in the presence of fluorinated P25 Evonik TiO2. It is proposed that the higher production of hydroxyl radicals and the lower hydrophilicity of the surface of the fluorinated sample favour hydroxylation of tyrosol and desorption of hydroxytyrosol, respectively, thus hindering the overoxidation of tyrosol. The presence of silver on fluorinated TiO2 was detrimental and it did not significantly improve the selectivity even on bare TiO2. Even if the selectivity hereby reported is relatively low, results show that the surface modification of the photocatalyst and the fluidodynamic optimization of the reacting system could make viable this interesting photocatalytic route of synthesis, which can be used also for the enrichment of some commercial polyphenolic solutions in the very valuable hydroxytyrosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Romero C, Brenes M (2012) Analysis of total contents of hydroxytyrosol and tyrosol in olive oils. J Agric Food Chem 60(36):9017–9022. https://doi.org/10.1021/jf3026666

    Article  CAS  Google Scholar 

  2. Kröhnke C, Schacker O, Zäh M (2015) Antioxidants. Ullmann's Encycl Ind Chem. https://doi.org/10.1002/14356007.a03_091.pub2

    Article  Google Scholar 

  3. Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36(10):1235–1247. https://doi.org/10.1016/S0959-8049(00)00103-9

    Article  CAS  Google Scholar 

  4. Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H (2000) Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1(2):107–112. https://doi.org/10.1016/S1470-2045(00)00015-2

    Article  CAS  Google Scholar 

  5. Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, Pour MR (2011) The neuroprotective effect of olive leaf extract is related to improved blood–brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine 18(2):170–175. https://doi.org/10.1016/j.phymed.2010.06.007

    Article  CAS  Google Scholar 

  6. Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125(2):288–306. https://doi.org/10.1016/j.foodchem.2010.08.012

    Article  CAS  Google Scholar 

  7. Baumann L, Weisberg E (2010) Chapter 122—olive oil in botanical cosmeceuticals. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic Press, San Diego, pp 1117–1124. https://doi.org/10.1016/B978-0-12-374420-3.00122-4

    Chapter  Google Scholar 

  8. Colica C, Renzo L, Trombetta D, Smeriglio A, Bernardini S, Cioccoloni G, Costa de Miranda R, Gualtieri P, Sinibaldi P, De Lorenzo A (2017) Antioxidant effects of a hydroxytyrosol-based pharmaceutical formulation on body composition, metabolic state, and gene expression: a randomized double-blinded, placebo-controlled crossover trial. Oxidative Med Cell Longev 2017:1–14. https://doi.org/10.1155/2017/2473495

    Article  CAS  Google Scholar 

  9. Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst K, Mangelsdorf I, McArdle H, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Loveren H (2017) Safety of hydroxytyrosol as a novel food pursuant to regulation (EC) No 258/97. EFS J. https://doi.org/10.2903/j.efsa.2017.4728

    Article  Google Scholar 

  10. Sciascia L, Casella S, Cavallaro G, Lazzara G, Milioto S, Princivalle F, Parisi F (2019) Olive mill wastewaters decontamination based on organo-nano-clay composites. Ceram Int 45(2):2751–2759. https://doi.org/10.1016/j.ceramint.2018.08.155

    Article  CAS  Google Scholar 

  11. Calabrese I, Gelardi G, Merli M, Rytwo G, Sciascia L, Liria Turco Liveri M New tailor-made bio-organoclays for the remediation of olive mill waste water. In IOP conference series: materials science and engineering. p 012040. https://doi.org/10.1088/1757-899X/47/1/012040

  12. Papadaki E, Mantzouridou FT (2016) Current status and future challenges of table olive processing wastewater valorization. Biochem Eng J 112:103–113. https://doi.org/10.1016/j.bej.2016.04.008

    Article  CAS  Google Scholar 

  13. Sedej I, Milczarek R, Wang SC, Sheng R, de Jesús A-B, Dao L, Takeoka G (2016) Membrane-filtered olive mill wastewater: quality assessment of the dried phenolic-rich fraction. J Food Sci 81(4):E889–E896. https://doi.org/10.1111/1750-3841.13267

    Article  CAS  Google Scholar 

  14. Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26(9):960–969. https://doi.org/10.1016/j.wasman.2005.07.024

    Article  CAS  Google Scholar 

  15. Benno Krueger GF, Hermann P (2014) Process for the preparation of hydroxytyrosol. United States of America Patent

  16. Breuninger M, Joray M (2008) Process for the preparation of hydroxytyrosol. Publication Number: WO2008107109

  17. Ziosi P, Paolucci C, Santarelli F, Tabanelli T, Passeri S, Cavani F, Righi P (2018) A two-step process for the synthesis of hydroxytyrosol. Chemsuschem 11(13):2202–2210. https://doi.org/10.1002/cssc.201800684

    Article  CAS  Google Scholar 

  18. Bernini R, Mincione E, Barontini M, Crisante F (2008) Method for preparing hydroxytyrosol derivatives and of hydroxytyrosol. Publication Number: WO2008110908A1

  19. Krueger B, Fleischmann G, Petersen H (2014) Process for the preparation of hydroxytyrosol. Publication Number: US8822738B1

  20. Ben Abdallah F, Hmani E, Bouaziz M, Jaziri M, Abdelhedi R (2017) Recovery of hydroxytyrosol a high added value compound through tyrosol conversion by electro-Fenton process. Sep Purif Technol 188:260–265. https://doi.org/10.1016/j.seppur.2017.07.035

    Article  CAS  Google Scholar 

  21. Piersanti G, Retini M, Espartero JL, Madrona A, Zappia G (2011) An efficient, economical synthesis of hydroxytyrosol and its protected forms via Baeyer-Villiger oxidation. Tetrahedron Lett 52(38):4938–4940. https://doi.org/10.1016/j.tetlet.2011.07.063

    Article  CAS  Google Scholar 

  22. Brooks SJ, Doyle EM, O’Connor KE (2006) Tyrosol to hydroxytyrosol biotransformation by immobilised cell extracts of Pseudomonas putida F6. Enzym Microbial Technol 39(2):191–196. https://doi.org/10.1016/j.enzmictec.2005.10.025

    Article  CAS  Google Scholar 

  23. Brouk M, Fishman A (2012) Improving process conditions of hydroxytyrosol synthesis by toluene-4-monooxygenase. J Mol Catal B Enzym 84:121–127. https://doi.org/10.1016/j.molcatb.2012.05.010

    Article  CAS  Google Scholar 

  24. Muñiz-Calvo S, Bisquert R, Puig S, Guillamón JM (2020) Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Food Chem 308:125646. https://doi.org/10.1016/j.foodchem.2019.125646

    Article  CAS  Google Scholar 

  25. Parrino F, Loddo V, Augugliaro V, Camera-Roda G, Palmisano G, Palmisano L, Yurdakal S (2019) Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catal Rev Sci Eng 61(2):163–213. https://doi.org/10.1080/01614940.2018.1546445

    Article  CAS  Google Scholar 

  26. Parrino F, Palmisano L (2018) Reactions in the presence of irradiated semiconductors: Are they simply photocatalytic? Mini-Rev Org Chem 15(2):157–164. https://doi.org/10.2174/1570193X14666171117151718

    Article  CAS  Google Scholar 

  27. Parrino F, De Pasquale C, Palmisano L (2019) Influence of surface-related phenomena on mechanism, selectivity, and conversion of TiO2-induced photocatalytic reactions. Chemsuschem 12(3):589–602. https://doi.org/10.1002/cssc.201801898

    Article  CAS  Google Scholar 

  28. Smida H, Beicheickh M, Jamoussi B (2013) Degradation of hydroxytyrosol in olive oil mill wastewaters using thermosensitive zinc phthalocyanine-modified titanium dioxide. J Residuals Sci Technol 10:47–54

    CAS  Google Scholar 

  29. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117(3):1445–1514. https://doi.org/10.1021/acs.chemrev.6b00396

    Article  CAS  Google Scholar 

  30. Simonsen ME, Li Z, Søgaard EG (2009) Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Appl Surf Sci 255(18):8054–8062. https://doi.org/10.1016/j.apsusc.2009.05.013

    Article  CAS  Google Scholar 

  31. Di Paola A, Bellardita M, Palmisano L, Barbierikova Z, Brezová V (2014) Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J Photochem Photobiol A 273:59–67. https://doi.org/10.1016/j.jphotochem.2013.09.008

    Article  CAS  Google Scholar 

  32. Ciriminna R, Delisi R, Parrino F, Palmisano L, Pagliaro M (2017) Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light. Chem Commun 53(54):7521–7524. https://doi.org/10.1039/c7cc04242f

    Article  CAS  Google Scholar 

  33. Abd-Elaal A, Parrino F, Ciriminna R, Loddo V, Palmisano L, Pagliaro M (2015) Alcohol-selective oxidation in water under mild conditions via a novel approach to hybrid composite photocatalysts. ChemistryOpen 4(6):779–785. https://doi.org/10.1002/open.201500110

    Article  CAS  Google Scholar 

  34. Mrowetz M, Selli E (2005) Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys Chem Chem Phys 7(6):1100–1102. https://doi.org/10.1039/B500194C

    Article  CAS  Google Scholar 

  35. Mino L, Pellegrino F, Rades S, Radnik J, Hodoroaba V-D, Spoto G, Maurino V, Martra G (2018) Beyond shape engineering of TiO2 nanoparticles: post-synthesis treatment dependence of surface hydration, hydroxylation, lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant 001 or 101 facets. ACS Appl Nano Mater 1(9):5355–5365. https://doi.org/10.1021/acsanm.8b01477

    Article  CAS  Google Scholar 

  36. Pellegrino F, Morra E, Mino L, Martra G, Chiesa M, Maurino V (2020) Surface and bulk distribution of fluorides and Ti3+ species in TiO2 nanosheets: implications on charge carrier dynamics and photocatalysis. J Phys Chem C 124(5):3141–3149. https://doi.org/10.1021/acs.jpcc.9b10912

    Article  CAS  Google Scholar 

  37. Fessi N, Faouzi Nsib M, Cardenas L, Guillard C, Dappozze F, Houas A, Parrino F, Palmisano L, Ledoux G, Amans D, Chevalier Y (2020) Surface and electronic features of fluorinated TiO2 and their influence on the photocatalytic degradation of 1-methylnaphthalene. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.0c01929

    Article  Google Scholar 

  38. Kus M, Altantzis T, Vercauteren S, Caretti I, Leenaerts O, Batenburg KJ, Mertens M, Meynen V, Partoens B, Van Doorslaer S, Bals S, Cool P (2017) Mechanistic insight into the photocatalytic working of fluorinated anatase 001 nanosheets. J Phys Chem C 121(47):26275–26286. https://doi.org/10.1021/acs.jpcc.7b05586

    Article  CAS  Google Scholar 

  39. Gao H, Zhang D, Yang M, Dong S (2017) Photocatalytic behavior of fluorinated rutile tio2(110) surface: understanding from the band model. Solar RRL 1(12):1700183. https://doi.org/10.1002/solr.201700183

    Article  CAS  Google Scholar 

  40. Du M, Qiu B, Zhu Q, Xing M, Zhang J (2019) Fluorine doped TiO2/mesocellular foams with an efficient photocatalytic activity. Catal Today 327:340–346. https://doi.org/10.1016/j.cattod.2018.03.066

    Article  CAS  Google Scholar 

  41. Bellardita M, Garlisi C, Venezia AM, Palmisano G, Palmisano L (2018) Influence of fluorine on the synthesis of anatase TiO2 for photocatalytic partial oxidation: are exposed facets the main actors? Catal Sci Technol 8:1606–1620. https://doi.org/10.1039/C7CY02382K

    Article  CAS  Google Scholar 

  42. Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L (2018) Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects. ACS Catal 8(12):11191–11225. https://doi.org/10.1021/acscatal.8b03093

    Article  CAS  Google Scholar 

  43. Tada H, Ishida T, Takao A, Ito S, Mukhopadhyay S, Akita T, Tanaka K, Kobayashi H (2005) Kinetic and DFT studies on the Ag/TiO2-photocatalyzed selective reduction of nitrobenzene to aniline. ChemPhysChem 6:1537–1543. https://doi.org/10.1002/cphc.200500031

    Article  CAS  Google Scholar 

  44. Augugliaro V, Kisch H, Loddo V, López-Muñoz MJ, Márquez-Álvarez C, Palmisano G, Palmisano L, Parrino F, Yurdakal S (2008) Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide: 1. Selectivity enhancement by aliphatic alcohols. Appl Catal A General 349(1):182–188. https://doi.org/10.1016/j.apcata.2008.07.032

    Article  CAS  Google Scholar 

  45. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide−fluoride system. Langmuir 16(6):2632–2641. https://doi.org/10.1021/la9903301

    Article  CAS  Google Scholar 

  46. Parrino F, Augugliaro V, Camera-Roda G, Loddo V, López-Muñoz MJ, Márquez-Álvarez C, Palmisano G, Palmisano L, Puma MA (2012) Visible-light-induced oxidation of trans-ferulic acid by TiO2 photocatalysis. J Catal 295:254–260. https://doi.org/10.1016/j.jcat.2012.08.018

    Article  CAS  Google Scholar 

  47. Araujo PZ, Morando PJ, Blesa MA (2005) Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies. Langmuir 21(8):3470–3474. https://doi.org/10.1021/la0476985

    Article  CAS  Google Scholar 

  48. Parrino F, Conte P, De Pasquale C, Laudicina VA, Loddo V, Palmisano L (2017) Influence of adsorbed water on the activation energy of model photocatalytic reactions. J Phys Chem C 121(4):2258–2267. https://doi.org/10.1021/acs.jpcc.6b11945

    Article  CAS  Google Scholar 

  49. Yurdakal S, Palmisano G, Loddo V, Augugliaro V, Palmisano L (2008) Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J Am Chem Soc 130(5):1568–1569. https://doi.org/10.1021/ja709989e

    Article  CAS  Google Scholar 

  50. Bellardita M, Augugliaro V, Loddo V, Megna B, Palmisano G, Palmisano L, Puma MA (2012) Selective oxidation of phenol and benzoic acid in water via home-prepared TiO2 photocatalysts: distribution of hydroxylation products. Appl Catal A 441–442:79–89. https://doi.org/10.1016/j.apcata.2012.07.019

    Article  CAS  Google Scholar 

  51. Wang Q, Chen C, Zhao D, Ma W, Zhao J (2008) Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 24(14):7338–7345. https://doi.org/10.1021/la800313s

    Article  CAS  Google Scholar 

  52. Vohra MS, Kim S, Choi W (2003) Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J Photochem Photobiol A 160(1):55–60. https://doi.org/10.1016/S1010-6030(03)00221-1

    Article  CAS  Google Scholar 

  53. Minero C, Mariella G, Maurino V, Vione D, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide−fluoride system. Langmuir 16(23):8964–8972. https://doi.org/10.1021/la0005863

    Article  CAS  Google Scholar 

  54. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  55. Camera-Roda G, Loddo V, Palmisano L, Parrino F, Santarelli F (2017) Process intensification in a photocatalytic membrane reactor: analysis of the techniques to integrate reaction and separation. Chem Eng J 310:352–359. https://doi.org/10.1016/j.cej.2016.06.019

    Article  CAS  Google Scholar 

  56. Gebru H, Cui S, Li Z, Wang X, Pan X, Liu J, Guo K (2017) Facile pH-dependent synthesis and characterization of catechol stabilized silver nanoparticles for catalytic reduction of 4-nitrophenol. Catal Lett 147(8):2134–2143. https://doi.org/10.1007/s10562-017-2100-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Parisi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests and no specific funding which supported this work to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlifi, H., Parisi, F., Elsellami, L. et al. Photocatalytic Partial Oxidation of Tyrosol: Improving the Selectivity Towards Hydroxytyrosol by Surface Fluorination of TiO2. Top Catal 63, 1350–1360 (2020). https://doi.org/10.1007/s11244-020-01287-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01287-y

Keywords

Navigation