Skip to main content
Log in

Topology optimization of continuum supporting structures for microwave antenna applications

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In microwave antenna applications, continuum structures usually support attached functional surfaces to realize some specific electromagnetic performance. Topology optimization of continuum supporting structures with functional surfaces is a challenge for microwave antenna applications. By introducing the concept of aperture field distribution into the design domain, a weighting approach for the topology optimization of continuum supporting structures with functional surfaces is presented based on the SIMP model. With the weighting aperture field distribution, the objective function of compliance in the previous SIMP method is changed to a weighted compliance. By selecting an optimized control factor, a different truss topology structure with several components from the previous method is clearly obtained. The effectiveness of the proposed method is validated through three typical applications: array antennas, reflector antennas, and conformal antennas with planar and curved functional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aage N, Mortensen NA, Sigmund O (2010) Topology optimization of metallic devices for microwave applications. Int J Numer Methods Eng 83:228–248

    Article  MathSciNet  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16

    Article  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Braaten BD, Roy S, Irfanullah I, Nariyal S, Anagnostou DE (2014) Phase-compensated conformal antennas for changing spherical surfaces. IEEE Trans Antennas Propag 62(4):1880–1887

    Article  Google Scholar 

  • Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Mutidiscip Optim 41:453–464

    Article  MathSciNet  Google Scholar 

  • Duan B, Wang C, Wang W (2017) Coupling modeling for functional surface of electronic equipment. Chin J Mech Eng 30:497–499

    Article  Google Scholar 

  • Emmendoerfer H Jr, Silva ECN, Fancello EA (2019) Stress-constrained level set topology optimization for design-dependent pressure load problems. Comput Methods Appl Mech Eng 344:569–601

    Article  MathSciNet  Google Scholar 

  • Emmendoerfer H Jr, Fancello EA, Silva ECN (2020) Stress-constrained level set topology optimization for compliant mechanisms. Comput Methods Appl Mech Eng 362:112777

    Article  MathSciNet  Google Scholar 

  • Erentok A, Sigmund O (2011) Topology optimization of sub-wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69

    Article  Google Scholar 

  • Hassan E, Wadbro E, Berggren M (2014) Topology optimization of metallic antennas. IEEE Trans Antennas Propag 62(5):2488–2500

    Article  MathSciNet  Google Scholar 

  • Haupt RL, Rahmat-Samii Y (2015) Antenna array developments: a perspective on the past, present, and future. IEEE Antennas Propag Mag 57(1):86–96

    Article  Google Scholar 

  • Hu N, Bao H, Duan B, Yang G, Zong Y, Wang M (2017) Topology optimization of reflector antennas based on integrated thermal-structural-electromagnetic analysis. Struct Multidiscip Optim 55:715–722

    Article  Google Scholar 

  • Imbriale WA (2006) Spaceborne antennas for planetary exploration. California Institute of Technology, Pasadena

    Book  Google Scholar 

  • Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 233-236:40–48

    Article  MathSciNet  Google Scholar 

  • Leng G, Wang W, Wu D, Cao H (2010) Continuum topology optimization of antenna radiation beam. Chin J Appl Mech 27(4):834–838 (In Chinese)

    Google Scholar 

  • Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50:1175–1196

    Article  MathSciNet  Google Scholar 

  • Liu S, Wang Q, Gao R (2014) A topology optimization method for design of small GPR antennas. Struct Multidiscip Optim 50:1165–1174

    Article  Google Scholar 

  • Liu S, Wang Q, Gao R (2016) MoM-based topology optimization method for planar metallic antenna design. Acta Mech Sinica 32:1058–1064

    Article  MathSciNet  Google Scholar 

  • Padula SL, Adelman HM, Bailey MC, Haftka RT (1989) Integrated structural electromagnetic shape control of large space antenna reflectors. AIAA J 27(6):817–819

    Article  Google Scholar 

  • Rahmat-Samii Y (1983) An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors. IEEE Trans Antennas Propag 31(1):92–98

    Article  MathSciNet  Google Scholar 

  • Rahmat-Samii Y, Manohar V, Kovitz JM, Hodges RE, Freebury G, Peral E (2019) Development of highly constrained 1 m Ka-band mesh deployable offset reflector antenna for next generation cubesat radars. IEEE Trans Antennas Propag 67(10):6254–6266

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  MathSciNet  Google Scholar 

  • Shin H, Yoo J (2018) Topological metallic structure design for microwave applications using a modified interpolation scheme. Struct Multidiscip Optim 57:1021–1045

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Mutlidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Kurt M (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  Google Scholar 

  • Wadbro E, Engstrom C (2015) Topology and shape optimization of plasmonic nano-antennas. Comput Methods Appl Mech Eng 293:155–169

    Article  MathSciNet  Google Scholar 

  • Yamaki Y, Sato Y, Izui K, Yamada T, Nishiwaki S, Hirai Y, Tabata O (2018) A heuristic approach for actuator layout designs in deformable mirror devices based on current value optimization. Struct Multidiscip Optim 58:1243–1254

    Article  MathSciNet  Google Scholar 

  • Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimization of continuous structures with design dependent loads. Comput Struct 83:956–963

    Article  Google Scholar 

  • Yuan P, Liu Z, Tan J (2017) Shape error analysis of functional surface based on isogeometrical approach. Chin J Mech Eng 30:544–552

    Article  Google Scholar 

  • Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multidiscip Optim 53:1157–1177

    Article  MathSciNet  Google Scholar 

  • Zhang H, Liu ST, Zhang X (2010) Topology optimization of 3D structures with design-dependent loads. Acta Mech Sinica 26:767–775

    Article  MathSciNet  Google Scholar 

  • Zhang S, Du J, Duan B, Yang G, Ma Y (2015) Integrated structural-electromagnetic shape control of cable mesh reflector antennas. AIAA J 53(5):1395–1398

    Article  Google Scholar 

  • Zhang WS, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53:1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhang S, Du J, Yang D, Zhang Y, Li S (2017) A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct Multidiscip Optim 55(1):289–295

    Article  MathSciNet  Google Scholar 

  • Zhang S, Duan B, Song L, Zhang X (2019) A handy formula for estimating the effects of random surface errors on average power pattern of distorted reflector antennas. IEEE Trans Antennas Propag 67(1):649–653

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and editor for their very beneficial comments and suggestion, which helped a lot in improving this paper.

Funding

This work was supported by National Natural Science Foundation of China No. 51705388, Shaanxi Natural Science Basic Research Project No. 2020JM-181, and Young Talent fund of University Association for Science and Technology in Shaanxi, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The results presented in this study can be replicated by implementing the formulas and data structures presented in this study. The code and data for producing the presented results will be made available by request.

Additional information

Responsible Editor: Emilio Carlos Nelli Silva

Publisher’s note

Springer Nature remains neutral withregard to jurisdictional claims in published mapsand institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Duan, B. Topology optimization of continuum supporting structures for microwave antenna applications. Struct Multidisc Optim 62, 2409–2422 (2020). https://doi.org/10.1007/s00158-020-02612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02612-5

Keywords

Navigation