Skip to main content
Log in

A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rational design of activatable photosensitizers for controlled generation of singlet oxygen remains a challenge for precise photodynamic therapy (PDT). Herein, we present an aptamer-based nanodevice for adenosine 5′-triphosphate (ATP)-activatable bioimaging and PDT. The nanodevice is constructed by modifying ATP-responsive duplex DNA units and polyethylene glycol on the surface of a gold nanoparticle (AuNP) through the thiolate-Au chemistry. The DNA units were designed by the hybridization of the ATP aptamer strand with a methylene blue (MB)-modified complementary DNA (cDNA). The close proximity of MB to the surface of AuNP results in the low photodynamic activity of MB (OFF state). Once internalized into cancer cells, the ATP-binding induced conformation switch of aptamer strand leads to the release of the MB-bearing DNA strand from AuNPs, resulting in the activatable generation of singlet oxygen under light irradiation (ON state). We demonstrate that the DNA nanodevice represents a promising platform for ATP-responsive bioimaging and specific PDT in vitro and in vivo. This work highlights a potential way for specific tumor diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolmans DEJGJ, Fukumura D, Jain RK. Nat Rev Cancer, 2003, 3: 380–387

    PubMed  CAS  Google Scholar 

  2. Lucky SS, Soo KC, Zhang Y. Chem Rev, 2015, 115: 1990–2042

    PubMed  CAS  Google Scholar 

  3. Li J, Pu K. Chem Soc Rev, 2019, 48: 38–71

    PubMed  CAS  Google Scholar 

  4. Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Chem Soc Rev, 2018, 47: 7369–7400

    PubMed  CAS  Google Scholar 

  5. Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. Chem Soc Rev, 2020, 49: 1041–1056

    PubMed  CAS  Google Scholar 

  6. Zhang K, Zhang Y, Meng X, Lu H, Chang H, Dong H, Zhang X. Biomaterials, 2018, 185: 301–309

    PubMed  CAS  Google Scholar 

  7. Shao Y, Liu B, Di Z, Zhang G, Sun LD, Li L, Yan CH. J Am Chem Soc, 2020, 142: 3939–3946

    PubMed  CAS  Google Scholar 

  8. Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L, Zhao Y. Angew Chem, 2020, 132: 2656–2660

    Google Scholar 

  9. Li Y, Di Z, Gao J, Cheng P, Di C, Zhang G, Liu B, Shi X, Sun LD, Li L, Yan CH. J Am Chem Soc, 2017, 139: 13804–13810

    PubMed  CAS  Google Scholar 

  10. Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, Ni D, Zhao K, Zhang S, Shi J. Biomaterials, 2015, 69: 89–98

    PubMed  CAS  Google Scholar 

  11. Liang S, Sun C, Yang P, Ma P, Huang S, Cheng Z, Yu X, Lin J. Biomaterials, 2020, 240: 119850

    PubMed  CAS  Google Scholar 

  12. Lu S, Tu D, Hu P, Xu J, Li R, Wang M, Chen Z, Huang M, Chen X. Angew Chem Int Ed, 2015, 54: 7915–7919

    CAS  Google Scholar 

  13. Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G. ACS Nano, 2014, 8: 10621–10630

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang S, Huang P, Nie L, Xing R, Liu D, Wang Z, Lin J, Chen S, Niu G, Lu G, Chen X. Adv Mater, 2013, 25: 3055–3061

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen Q, Ke H, Dai Z, Liu Z. Biomaterials, 2015, 73: 214–230

    PubMed  CAS  Google Scholar 

  16. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC. J Am Chem Soc, 2015, 137: 2140–2154

    PubMed  CAS  Google Scholar 

  17. Lovell JF, Liu TWB, Chen J, Zheng G. Chem Rev, 2010, 110: 2839–2857

    PubMed  CAS  Google Scholar 

  18. Tsuji Y, Yamamoto K, Yamauchi K, Sakai K. Angew Chem Int Ed, 2018, 57: 208–212

    CAS  Google Scholar 

  19. Mi Y, Cheng HB, Chu H, Zhao J, Yu M, Gu Z, Zhao Y, Li L. Chem Sci, 2019, 10: 10231–10239

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Cló E, Snyder JW, Voigt NV, Ogilby PR, Gothelf KV. J Am Chem Soc, 2006, 128: 4200–4201

    PubMed  Google Scholar 

  21. Piao W, Hanaoka K, Fujisawa T, Takeuchi S, Komatsu T, Ueno T, Terai T, Tahara T, Nagano T, Urano Y. J Am Chem Soc, 2017, 139: 13713–13719

    PubMed  CAS  Google Scholar 

  22. Li X, Kolemen S, Yoon J, Akkaya EU. Adv Funct Mater, 2017, 27: 1604053

    Google Scholar 

  23. Luby BM, Walsh CD, Zheng G. Angew Chem Int Ed, 2019, 58: 2558–2569

    CAS  Google Scholar 

  24. Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W. ACS Nano, 2012, 6: 5070–5077

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Fan H, Yan G, Zhao Z, Hu X, Zhang W, Liu H, Fu X, Fu T, Zhang XB, Tan W. Ac, 2016, 55: 5477–5482

    CAS  Google Scholar 

  26. Knowles JR. Annu Rev Biochem, 1980, 49: 877–919

    PubMed  CAS  Google Scholar 

  27. Rajendran M, Dane E, Conley J, Tantama M. Biol Bull, 2016, 231: 73–84

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Imamura H, Huynh Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H. Proc Natl Acad Sci USA, 2009, 106: 15651–15656

    PubMed  CAS  Google Scholar 

  29. Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z. Cancer Res, 2012, 72: 304–314

    PubMed  CAS  Google Scholar 

  30. Gao J, Li J, Geng WC, Chen FY, Duan X, Zheng Z, Ding D, Guo DS. J Am Chem Soc, 2018, 140: 4945–4953

    PubMed  CAS  Google Scholar 

  31. Wang Y, Tang L, Li Z, Lin Y, Li J. Nat Protoc, 2014, 9: 1944–1955

    PubMed  CAS  Google Scholar 

  32. Liu Q, Jing C, Zheng X, Gu Z, Li D, Li DW, Huang Q, Long YT, Fan C. Chem Commun, 2012, 48: 9574–9576

    CAS  Google Scholar 

  33. Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L. J Am Chem Soc, 2018, 140: 578–581

    PubMed  CAS  Google Scholar 

  34. Di Z, Zhao J, Chu H, Xue W, Zhao Y, Li L. Adv Mater, 2019, 31: 1901885

    Google Scholar 

  35. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA. Nano Lett, 2009, 9: 3258–3261

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Xu Z, Singh NJ, Lim J, Pan J, Kim HN, Park S, Kim KS, Yoon J. J Am Chem Soc, 2009, 131: 15528–15533

    PubMed  CAS  Google Scholar 

  37. Deng J, Wang K, Wang M, Yu P, Mao L. J Am Chem Soc, 2017, 139: 5877–5882

    PubMed  CAS  Google Scholar 

  38. Pu K. Sci China Chem, 2018, 61: 1353–1354

    CAS  Google Scholar 

  39. Zhou X, Su X, Pathak P, Vik R, Vinciguerra B, Isaacs L, Jayawickramarajah J. J Am Chem Soc, 2017, 139: 13916–13921

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. Angew Chem Int Ed, 2012, 51: 10751–10755

    CAS  Google Scholar 

  41. Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Nat Chem, 2013, 5: 613–620

    PubMed  CAS  Google Scholar 

  42. Lai J, Shah BP, Zhang Y, Yang L, Lee KB. ACS Nano, 2015, 9: 5234–5245

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. JAm Chem Soc, 2019, 141: 3782–3786

    CAS  Google Scholar 

  44. Hu Q, Li H, Wang L, Gu H, Fan C. Chem Rev, 2019, 119: 6459–6506

    PubMed  CAS  Google Scholar 

  45. Mo R, Jiang T, DiSanto R, Tai W, Gu Z. Nat Commun, 2014, 5: 3364

    PubMed  Google Scholar 

  46. Mo R, Jiang T, Gu Z. Angew Chem Int Ed, 2014, 53: 5815–5820

    CAS  Google Scholar 

  47. Shen Y, Tian Q, Sun Y, Xu JJ, Ye D, Chen HY. Anal Chem, 2017, 89: 13610–13617

    PubMed  CAS  Google Scholar 

  48. Liu J, Lu Y. Nat Protoc, 2006, 1: 246–252

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822401, 21805060, 21771044) and the Young Thousand Talented Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lele Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Ma, R., Zhao, J. et al. A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Sci. China Chem. 63, 1490–1497 (2020). https://doi.org/10.1007/s11426-020-9764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9764-9

Keywords

Navigation