Skip to main content
Log in

Cell wall structural changes lead to separation and shedding of biofouled epidermal cell wall layers by the brown alga Ascophyllum nodosum

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Marine plants control the accumulation of biofouling organisms (epibionts) on their surfaces by various chemical and physical means. Ascophyllum nodosum is a perennial multicellular brown alga known to shed patches of epidermal material, thus removing epibionts and exposing unfouled surfaces to another cycle of colonization. While surface shedding is documented in multiple marine macroalgae, the cell and developmental biology of the phenomenon is almost unexplored. A previous investigation of Ascophyllum not only revealed regular cycles of epibiont accumulation and epidermal shedding but also stimulated the development of methods to detect the corresponding changes in epidermal (meristoderm) cells that are reported here. Confocal laser scanning microscopy of cell walls and cytoplasm fluorescently stained with Solophenyl Flavine 7GFE (Direct Yellow 96) and the lipophilic dye Rhodamine B (respectively) was combined with light and electron microscopy of chemically fixed or freeze-substituted tissues. As epibionts accumulated, epidermal cells generated thick, apical cell walls in which differentially stained central layers subsequently developed, marking the site of future cell wall separation. During cell wall separation, the outermost part of the cell wall and its epibionts plus the upper parts of the anticlinal walls between neighboring cells detached in a layer from multiple epidermal cells, exposing the remaining inner part of the cell wall to new colonizing organisms. These findings highlight the dynamic nature of apical cell wall structure and composition in response to colonizing organisms and lay a foundation for further investigations on the periodic removal of biofouling epibionts from the surface of Ascophyllum fronds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796. https://doi.org/10.1104/pp109.150128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade LR, Salgado LT, Farina M, Pereira MS, Mourão PAS, Filho GMA (2004) Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J Struct Biol 145:216–225. https://doi.org/10.1016/j.jsb.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  • Baardseth E (1970) Synopsis of biological data on knobbed wrack Ascophyllum nodosum (Linnaeus) Le Jolis. FAO Fish Synop 38:1–40

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1977) Calcification in the green alga Halimeda. I An ultrastructure study of thallus development. J Phycol 13:6–16

    Google Scholar 

  • Charrier B, Rabille H, Billoud B (2019) Gazing at cell wall expansion under a golden light. Trends Plant Sci 24:130–141

    Article  CAS  PubMed  Google Scholar 

  • Da Gama B, Plouguerne E, Pereira R (2014) The antifouling defence mechanisms of marine macroalgae. Adv Bot Res 71:414–440

    Google Scholar 

  • Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C (2014) Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann Bot 114:1203–1216. https://doi.org/10.1093/aob/mcu096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym 175:395–408

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2012) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37:462–476. https://doi.org/10.1111/1574-6976.12011

  • Filion-Myklebust C, Norton TA (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.) Jolis, and its ecological significance. Mar Biol Let 2:45–51

    Google Scholar 

  • Garbary DJ, Galway ME (2013) Programmed cell death in multicellular algae. In: Heimann K, Katsaros C (eds) Advances in algal cell biology. De Gruyter, Berlin, pp 1–19

    Google Scholar 

  • Garbary DJ, Lawson G, Clement K, Galway ME (2009) Cell division in the absence of mitosis: the unusual case of the fucoid Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Algae 24:239–248. https://doi.org/10.4490/ALGAE.2009.24.4.239

    Article  Google Scholar 

  • Garbary DJ, Brown NE, McDonell HJ, Toxopeus J (2017a) Ascophyllum and its symbionts – a complex symbiotic community on North Atlantic shores. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific, London, pp 547–572

    Chapter  Google Scholar 

  • Garbary DJ, Galway ME, Halat L (2017b) Response to Ugarte et al.: Ascophyllum (Phaeophyceae) annually contributes over 100% of its vegetative biomass to detritus. Phycologia 56:116–118. https://doi.org/10.2216/16-44.1

  • Gonzalez MA, Goff LJ (1989) The red algal epiphytes Microcladia coulteri and M. californica (Rhodophyceae, Ceramiaceae). II. Basiphyte specificity. J Phycol 25:558–567

    Article  Google Scholar 

  • Guan Y, Li Y, Hu J, Ma W, Zheng Y, Zhu S (2013) A new effective fluorescent labeling method for anti-counterfeiting of tobacco seed using Rhodamine B. Australian J Crop Sci 7:234–240

    CAS  Google Scholar 

  • Guiry MD, Cunningham EM (1984) Photoperiodic and temperature responses in the reproduction of North-Eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23:357–367

    Article  Google Scholar 

  • Halat L, Galway M, Gitto S, Garbary DJ (2015) Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity, and relationship to harvesting. Phycologia 54:599–608. https://doi.org/10.2216/15-32.1

    Article  CAS  Google Scholar 

  • Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97:580–588

    Article  CAS  PubMed  Google Scholar 

  • Keats DW, Knight MA, Pueschel CM (1997) Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Corallinales) on a coral reef. J Exp Mar Biol Ecol 213:281–293

    Article  Google Scholar 

  • Knoblauch J, Drobnitch ST, Peters WS, Knoblauch M (2016) In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? Plant Cell Environ 39:1727–1736. https://doi.org/10.1111/pce.12736

    Article  CAS  PubMed  Google Scholar 

  • Küpper FC, Carrano CJ (2019) Key aspects of iodine metabolism in brown algae: a brief critical review. Mettalomics 11:756–764

    Article  Google Scholar 

  • Küpper FC, Kloarag B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291. https://doi.org/10.1104/pp.125.1.278

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z (2004) Confocal laser scanning microcopy – an attractive tool for studying the uptake of xenobiotics into plant foliage. J Microsc 213:87–93

    Article  CAS  PubMed  Google Scholar 

  • Mabeau S, Kloareg B (1987) Isolation and analysis of the cell walls of brown algae: Fucus spiralis, F. ceranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata. J Exp Bot 38:1573–1580. https://doi.org/10.1093/jxb/38.9.1573

    Article  CAS  Google Scholar 

  • Martin M, Barbeyron T, Marin R, Portetelle D, Michel G, Vandenbol M (2015) The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol 6:1487. https://doi.org/10.3389/fmicb.2015.01487

  • Martinez E, Correa JA (1993) Sorus-specific epiphytism affecting the kelps Lessonia nigrescens and L. trabeculata (Phaeophyta). Mar Ecol Prog Ser 96:83–92

    Article  Google Scholar 

  • Martone PT, Boller M, Burgert I, Dumais J, Edwards J, Mach K, Rowe N, Rueggeberg M, Seidel R, Speck T (2010) Mechanics without muscle: biomechanical inspiration from the plant world. Integr Comp Biol 50:888–907. https://doi.org/10.1093/icb/icq122

    Article  PubMed  Google Scholar 

  • McArthur DM, Moss BL (1977) The ultrastructure of cell walls in Enteromorpha intestinalis (L.) link. Br Phycol J 12:359–368. https://doi.org/10.1080/00071617700650381

    Article  Google Scholar 

  • McCully ME (1965) A note on the structure of the cell walls of the brown alga Fucus. Can J Bot 43:1001–1004

    Article  Google Scholar 

  • McCully ME (1966) Histological studies on the genus Fucus. Protoplasma 62:287–305

    Article  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97. https://doi.org/10.1111/j.1469-8137.2010.03374.x

    Article  CAS  PubMed  Google Scholar 

  • Moss BL (1982) The control of epiphytes by Halidrys siliquosa (L.) Lyngb. (Phaeophyta, Cystoseiraceae). Phycologia 21:185–191. https://doi.org/10.2216/i0031-8884-21-2-185.1

  • O’Malley MA (2017) From endosymbiosis to holobionts: evaluating a conceptual legacy. J Theor Biol 434:34–41

    Article  PubMed  Google Scholar 

  • Pedersen PM, Sokhi G (1990) Studies on the type species of Compsonema, C. minutum (Fucophyceae, Scytosiphonales); aspects of life history, taxonomic position, shedding of wall elements and plasmodesmata. Nord J Bot 10:547–555

    Article  Google Scholar 

  • Ponce N, Leonardi P, Flores M, Stortz C, Rodríguez M (2007) Polysaccharide localization in the sporophyte cell wall of Adenocystis utricularis (Ectocarpales s.l., Phaeophyceae). Phycologia 46:675–679. https://doi.org/10.2216/06-102.1

    Article  Google Scholar 

  • Popper ZA, Michel G, Hervé C, Domozych DS, Willats WG, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590. https://doi.org/10.1146/annurev-arplant-042110-103809

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 7 Feb 2019

  • Raimundo SC, Pattathil S, Eberhard S, Hahn MG, Popper ZA (2017) Beta-1,3-glucans are components of brown seaweed (Phaeophyceae) cell walls. Protopasma 254:997–1016

    Article  CAS  Google Scholar 

  • Rickert E, Lenz M, Barboza FR, Gorb SN, Wahl M (2016) Seasonally fluctuating chemical microfouling control in Fucus vesiculosus and Fucus serratus from the Baltic Sea. Mar Biol 163:203–213. https://doi.org/10.1007/s00227-016-2970-3

    Article  CAS  Google Scholar 

  • Russell G, Veltkamp CJ (1984) Epiphyte survival on skin-shedding macrophytes. Mar Ecol Prog Ser 18:149–153

    Article  Google Scholar 

  • Salmeán AA, Duffieux D, Harholt J, Qin F, Michel G, Czjzek M, Willats WGT, Hervé C (2017) Insoluble (1→ 3),(1→ 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues. Sci Rep 7:2880. https://doi.org/10.1038/s41598-017-03081-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol 2:24–33. https://doi.org/10.1055/s-2000-9178

  • Scriptsova AV (2015) Fucoidans in brown algae: biosynthesis, localization, and physiological role in thallus. Russ J Mar Biol 41:145–156

    Article  CAS  Google Scholar 

  • Sieburth JM, Tootle JW (1981) Seasonality of microbial fouling on Ascophyllum nodosum (L.) LeJol., Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J Phycol 17:57–64

    Article  Google Scholar 

  • Sokhi G, Vijayaraghavan MR (1985) Extracellular polysaccharides in Turbinaria conoides: structure and ultrastructure. Curr Sci 54:1192–1193

    CAS  Google Scholar 

  • Sokhi G, Vijayaraghavan MR (1987) Meristoderm in Turbinaria conoides (Fucales, Sargassaceae). Aquat Bot 28:171–177

    Article  Google Scholar 

  • Speransky W, Brawley SH, McCully ME (2001) Ion fluxes and modification of the extracellular matrix during gamete release in fucoid algae. J Phycol 37:555–573

    Article  Google Scholar 

  • Stengel DB, Dring MJ (2000) Copper and iron concentrations in Ascophyllum nodosum (Fucales, Phaeophyta) from different sites in Ireland and after culture experiments in relation to thallus age and epiphytism. J Exp Mar Biol Ecol 246:145–161

    Article  CAS  PubMed  Google Scholar 

  • Terauchi M, Nagasato C, Inoue A, Ito T, Motomura T (2016) Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). Planta 244:361–377. https://doi.org/10.1007/s00425-016-2516-377

    Article  CAS  PubMed  Google Scholar 

  • Tornbom L, Oliveira L (1993) Wound healing in Vaucheria longicaulis Hoppaugh var. macounii Blum. New Phytol 124:135–148

  • Torode TA, Marcus SE, Jam M, Tonon T, Blackburn RS, Hervé C, Knox JP (2015) Monoclonal antibodies directed to fucoidan preparations from brown algae. PLoS One 10(2):e0118366. https://doi.org/10.1371/journal.pone.0118366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torode TA, Simeon A, Marcus SE, Jam M, Le Moigne MA, Duffieux D, Knox JP, Hervé C (2016) Dynamics of cell wall assembly during early embryogenesis in the brown alga Fucus. J Exp Bot 67:6089–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugarte R, Lauzon-Guay J-S, Critchley AT (2017) Comments on Halat L., Galway M.E., Gitto S. & Garbary D.J. 2015. Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity and relationship to harvesting. Phycologia 54: 599–608. Phycologia 56:114–115. https://doi.org/10.2216/16-36.1

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

  • Wahl M, Goeke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292. https://doi.org/10.3389/fmicb.2012.00292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Western TL (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22:1–25

    Article  CAS  Google Scholar 

  • Xu H, Deckert RJ, Garbary DJ (2008) Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. nodosum (Phaeophyceae) and Mycophycias ascophylli (Ascomycetes). Botany 86:185–193

    Article  Google Scholar 

  • Yamamoto K, Endo H, Yoshikawa S, Ohki K, Kamiya M (2013) Various defense ability of four sargassacean algae against the red algal epiphyte Neosiphonia harveyi in Wakasa Bay, Japan. Aquat Bot 105:11–17

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. George Robertson for technical assistance and training on electron microscopes.

Funding

LH was supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). The research was funded by the University Council of Research at St. Francis Xavier University and NSERC Discovery Grants to DG and MG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moira E. Galway.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: David McCurdy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halat, L., Galway, M.E. & Garbary, D.J. Cell wall structural changes lead to separation and shedding of biofouled epidermal cell wall layers by the brown alga Ascophyllum nodosum. Protoplasma 257, 1319–1331 (2020). https://doi.org/10.1007/s00709-020-01502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01502-3

Keywords

Navigation