Skip to main content
Log in

Analytical Approach to the Surface Plasmon Resonance Characteristic of Metal Nanoparticle Dimer in Dipole-Dipole Approximation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This theoretical study deals with the effect of bi-particle interaction on the surface plasmon resonance (SPR) in a dimer which includes two identical metal nanoparticles (NPs). Considering the dipole-dipole interaction in a Drude-like model, an appropriate equation is derived for the permittivity of each NP. The restoration force related to the classical confinement originating from the finite size of NPs is considered, and an appropriate adjustment coefficient is considered for this term through analyzing experimental data. Two different polarizations are considered for the laser beam electric field, and it is shown that the orientation of the electric field has an essential role in the linear optical properties of a dimer. Numerical investigation is accomplished for a dimer of gold NPs with two different diameters of 4 nm and 20 nm. For the parallel polarization, dipole-dipole interaction leads to the redshift of SPR wavelength and increase in its peak value, while for the perpendicular polarization, the absolute opposite results are derived. For all cases, it is shown that SPR wavelength functionality with respect to the geometric factor a/d (NP radius to the separation) can be presented by a cubic equation that fits better than an exponential one suggested by the earlier studies which demonstrates the dipole-dipole characteristic of the interaction. Qualitatively, our results are in good agreement with the other experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. García MA (2011) J Phys D Appl Phys 44:283001

    Google Scholar 

  2. Chen C, Heinz T, Ricard D, Shen Y (1983) Phys Rev B 27:1965

    CAS  Google Scholar 

  3. Schatz GC (1984) Acc Chem Res 17:370

    CAS  Google Scholar 

  4. Fritzsche W, Taton TA (2003) Nanotechnology 14:R63

    CAS  Google Scholar 

  5. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Chem Soc Rev 35:1084

    CAS  Google Scholar 

  6. Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209

    CAS  Google Scholar 

  7. Pillai S, Catchpole K, Trupke T, Green M (2007) J Appl Phys 101:093105

    Google Scholar 

  8. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Nat Mater 9:239

    CAS  Google Scholar 

  9. Matheu P, Lim S, Derkacs D, McPheeters C, Yu E (2008) Appl Phys Lett 93:113108

    Google Scholar 

  10. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability

  11. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) J Am Chem Soc 130:1676

    CAS  Google Scholar 

  12. Larsson EM, Langhammer C, Zorić I, Kasemo B (2009) Science 326:1091

    CAS  Google Scholar 

  13. Homola J, Piliarik M (2006) In: Surface plasmon resonance based sensors. Springer, pp 45–67

  14. Ozbay E (2006) Science 311:189

    CAS  Google Scholar 

  15. Maier SA (2006) IEEE J Sel Top Quantum Electron 12:1671

    CAS  Google Scholar 

  16. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824

    CAS  Google Scholar 

  17. Ditlbacher H, Krenn J, Lamprecht B, Leitner A, Aussenegg F (2000) Opt Lett 25:563

    CAS  Google Scholar 

  18. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Anal Chem 79:4215

    CAS  Google Scholar 

  19. Myroshnychenko V, Rodríguez-fernández J, Pastoriza-santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, de Abajo FJG (2008) Chem Soc Rev 37:1792

    CAS  Google Scholar 

  20. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Chem Rev 111:3913

    CAS  Google Scholar 

  21. Sheikholeslami S, Jun Y-W, Jain PK, Alivisatos AP (2010) Nano Lett 10:2655

    CAS  Google Scholar 

  22. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) J Phys Chem B 107:7337

    CAS  Google Scholar 

  23. Ghosh SK, Pal T (2007) Chem Rev 107:4797

    CAS  Google Scholar 

  24. Romero I, Aizpurua J, Bryant GW, De Abajo FJG (2006) Opt Express 14:9988

    Google Scholar 

  25. Scholl JA, García-etxarri A, Koh AL, Dionne JA (2013) Nano Lett 13:564

    CAS  Google Scholar 

  26. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment

  27. Hooshmand N, Bordley JA, El-Sayed MA (2015) J Phys Chem C 119:15579

    CAS  Google Scholar 

  28. Su K-H, Wei Q-H, Zhang X, Mock J, Smith DR, Schultz S (2003) Nano Lett 3:1087

    CAS  Google Scholar 

  29. Tabor C, Murali R, Mahmoud M, El-Sayed MA (2008) J Phys Chem A 113:1946

    Google Scholar 

  30. Jain PK, Huang W, El-Sayed MA (2007) Nano Lett 7:2080

    CAS  Google Scholar 

  31. Hooshmand N, El-Sayed MA (2019) Proc Natl Acad Sci 116:19299

    CAS  Google Scholar 

  32. Asef K, Nasser SJ, Hosein M (2020) Scientific reports (nature publisher group), pp 10

  33. Sepehri Javan N (2015) Phys Plasmas 22:093116

    Google Scholar 

  34. Sepehri Javan N (2015) J Appl Phys 118:073104

    Google Scholar 

  35. Sepehri Javan N, Rouhi Erdi F, Najafi M (2017) Phys Plasmas 24:052301

    Google Scholar 

  36. Sepehri Javan N, Homami S (2015) Phys Plasmas 22:082311

    Google Scholar 

  37. Sepehri Javan N, Amjadi N, Mohammadzadeh H (2016) Phys Plasmas 23:123114

    Google Scholar 

  38. Javan NS, Erdi FR (2019) Plasmonics 14:219

    CAS  Google Scholar 

  39. Javan NS, Naderali R, Azad MH, Najafi M (2019) Plasmonics 14:579

    Google Scholar 

  40. Kheirandish A, Javan NS, Mohammadzadeh H (2018) Phys Scr 93:095802

    Google Scholar 

  41. Johnson PB, Christy R-W (1972) Phys Rev B 6:4370

    CAS  Google Scholar 

  42. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles . Wiley, New York

  43. Jain PK, El-Sayed MA (2010) Chem Phys Lett 487:153

    CAS  Google Scholar 

  44. Rechberger W, Hohenau A, Leitner A, Krenn J, Lamprecht B, Aussenegg F (2003) Opt Commun 220:137

    CAS  Google Scholar 

  45. Starowicz Z, Wojnarowska-Nowak R, Ozga P, Sheregii E (2018) Colloid Polym Sci 296:1029

    CAS  Google Scholar 

  46. Hong S, Li X (2013) J Nanomater 2013:49

    Google Scholar 

  47. Genzel L, Martin T, Kreibig U (1975) Z Phys B Condens Matter 21:339

    CAS  Google Scholar 

  48. Coronado EA, Schatz GC (2003) J Chem Phys 119:3926

    CAS  Google Scholar 

  49. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Nano Lett 5:515

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Sepehri Javan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Single Gold NP Permittivity

Appendix A: Single Gold NP Permittivity

In a recent study [32], we have shown that based on a phenomenological Drude-like model which includes the role of classical confinement related to the appearance of restoration force caused by the displacement of conduction electrons with respect to the positive ionic background, the permittivity of a single NP can be determined properly through extracting free phenomenological parameters of ξ and γ by experimental data of extinction cross-section of individual NPs. For small NPs, these parameters are considered as a function of wavelength and NP radius. In this Appendix, we use the same approach in order to find permittivity of large gold NPs ranged from 20 to 90 nm whose extinction cross-section can be found in experimental investigations [45, 46]. The value of the free parameters ξ and γ in the permittivity of an NP with a given diameter are suggested through a trial and error process in order to by applying this permittivity in the extinction cross-section of Eq. (20), good agreement reveals between experimental and theoretical data. In Fig. 5, the extinction efficiency of a single gold NP suspended in a water medium has been plotted for different sizes of spherical NPs. The dotted curves are obtained experimentally [45] and the solid lines show our model results. For the model, we have used the phenomenological parameters as follows:

$$ \begin{array}{@{}rcl@{}} \xi = {\xi_{0}} + {c_{1}}\frac{1}{a} + {c_{2}}\frac{1}{{{a^{2}}}} + {c_{3}}\frac{1}{{{a^{3}}}}, \end{array} $$
(27)
Fig. 5
figure 5

The calculated extinction efficiency (solid lines) and the experimentally measured ones (dotted line) in dependence of wavelength for NPs diameters of 20, 30, 40, 50, 60, 70, 80, and 90 nm (the order of diameter increase is from bottom to top)

where

$$ \begin{array}{@{}rcl@{}} &&{\xi_{0}} = - 0.950 \times {10^{- 3}}, {c_{1}} = 5.44~\text{nm}, \\ &&{c_{2}} = - 1.17n{m^{2}}, {c_{3}} = 0.08~\text{nm}{^{3}}, \end{array} $$
(28)

and a is in nm. For the damping factor γ of NP, we use the following expression:

$$ \begin{array}{@{}rcl@{}} \gamma = {\gamma_{0}} + {\gamma_{surf}}, \end{array} $$
(29)

where γ0 = 0.7 × 1014s− 1 and γsurf = AvF/a is the electron damping coefficient caused by the scattering of electron by the surface of NP which is called the mean free path limitation effect [47, 48]; here, A = 0.25 is a dimensionless parameter and vF is the gold Fermi velocity [49]. It should be mentioned that there is a deviation between our modeled extinction cross-section and the experimental data. Such deviations commonly are existed in all theoretical works because of the fact that including all classical and quantum effects in one simple model like Drude model practically is not possible and all efforts are focused on getting approximately correct peak place in the extinction cross-section.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirandish, A., Javan, N.S. & Mohammadzadeh, H. Analytical Approach to the Surface Plasmon Resonance Characteristic of Metal Nanoparticle Dimer in Dipole-Dipole Approximation. Plasmonics 15, 1807–1814 (2020). https://doi.org/10.1007/s11468-020-01198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01198-4

Keywords

Navigation