Skip to main content
Log in

Unidirectional Optical Transmission of a Dual Metallic Grating with Grooves

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a dual grating structure for unidirectional transmission is presented. The forward and backward transmission performances have been investigated by finite element method. To enhance the forward transmission and to suppress the backward transmission simultaneously, we suggested to cut grooves on the surfaces of one of the gratings, and the effects of the grooves on the optical transmission have been studied. The numerical simulation results reveal that the transmission contrast ratio and the optical unidirectional transmission of the structure can be improved markedly by properly arranging the size and the position of the grooves. The forward transmission can be more than 90%, while the backward transmission transmittance is less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rostami A (2007) Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators. Opt Laser Technol 39(5):1059–1065

    Article  Google Scholar 

  2. Gallo K, Assanto G, Parameswaran KR, Fejer MM (2001) All-optical diode in a periodically poled lithium niobate waveguide. Appl Phys Lett 79(3):314–316

    Article  CAS  Google Scholar 

  3. Zang XF, Jiang C (2011) Edge mode in nonreciprocal photonic crystal waveguide: manipulating the unidirectional electromagnetic pulse dynamically. J Opt Soc Am B 28(3):554–557

    Article  CAS  Google Scholar 

  4. Cai XH, Wang XF, Li SH (2012) Design of high-contrast all-optical diodes based on coupled nonlinear photonic crystal microcavities. Opt Commun 285:1959–1963

    Article  CAS  Google Scholar 

  5. Kurt H, Yilmaz D, Akosman AE, Ozbay E (2012) Asymmetric light propagation in chirped photonic crystal waveguides. Opt Express 20(18):20635–20646

    Article  CAS  PubMed  Google Scholar 

  6. Khanikaev AB, Steel MJ (2009) Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt Express 17(7):5265–5272

    Article  CAS  PubMed  Google Scholar 

  7. El-Metwally A, Areed NFF, Hameed MFO, Obayya SSA (2016) Reconfigurable unidirectional photonic crystal using liquid crystal layer. IEEE Photonics Journal 9(1):1–9

    Article  Google Scholar 

  8. Xu PW, Zhang MS, Chen ZQ, Qi JW, Chen J, Qian J, Li YD, Sun Q, Xu JJ (2018) Unidirectional optical transmission in a single-layer metallic grating consisting of cambered resonators. IEEE Photonics J 10(4):1–8

    CAS  Google Scholar 

  9. Tang B, Li ZY, Liu ZZ, Callewaert F, Aydin K (2016) Broadband asymmetric light transmission through tapered metallic gratings at visible frequencies. Sci Rep 6(1):39166–39166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao C, Zhou YS, Wang HY, Wang H, Zhao LM (2014) Mechanism of the optical unidirectional transmission in metal subwavelength grating with different surfaces. Opt Commun 316(7):17–21

    Article  CAS  Google Scholar 

  11. Ozer A, Kocer H, Kurt H (2018) Broadband and polarization-independent asymmetric transmission of visible light through a three-dimensional trapezoidal metallic metasurface. Journal of The Optical Society of America B-optical Physics 35(9):2111–2117

    Article  CAS  Google Scholar 

  12. Battal E, Yogurt TA, Okyay AK (2013) Ultrahigh contrast one-way optical transmission through a subwavelength slit. Plasmonics 8(2):509–513

    Article  CAS  Google Scholar 

  13. Zhu HB, Li F, Tang B, Zang XF, Jiang C (2014) Asymmetric transmission through metallic grating with dielectric substrate. Opt Commun 318:41–46

    Article  CAS  Google Scholar 

  14. Gao H, Zheng ZY, Hao HY, Dong AG, Liu DH (2014) Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings. Applied Physics B 114(3):401–406

    Article  CAS  Google Scholar 

  15. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72(7):075405

    Article  CAS  Google Scholar 

  16. Liu ZM, Gao ED, Zhou FQ (2018) Sharp multiple-phase resonances in a plasmonic compound grating with multislits. IEEE Photonics Journal 10(4):1–8

    Google Scholar 

  17. Zhou YS, Wang H, Zhao LM, Wang HY (2015) Optical unidirectional transmission in metal slit structures caused by convergent and shield effects. Eur Phys J D 69(8):1–5

    Article  CAS  Google Scholar 

  18. Gay G, Alloschery O, Viaris DLB, O’Dwyer C, Weiner J, Lezec HJ (2006) The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat Phys 2(4):262–267

    Article  CAS  Google Scholar 

  19. Zhou YS, Wang HY, Zhao LM, Lan S (2011) Enhancement of the contrast ratio associated with surface waves in a metal pillar-slit structure. Phys Rev A 83(3):2077–2085

    Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 11274219 and 11174304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhong, W. & Li, S. Unidirectional Optical Transmission of a Dual Metallic Grating with Grooves. Plasmonics 15, 1799–1805 (2020). https://doi.org/10.1007/s11468-020-01197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01197-5

Keywords

Navigation