Skip to main content
Log in

The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

OsGTγ-2, a trihelix transcription factor, is a positive regulator of rice responses to salt stress by regulating the expression of ion transporters.

Abstract

Salinity stress seriously restricts rice growth and yield. Trihelix transcription factors (GT factors) specifically bind to GT elements and play a diverse role in plant morphological development and responses to abiotic stresses. In our previous study, we found that the GT-1 element (GAAAAA) is a key element in the salinity-induced OsRAV2 promoter. Here, we identified a rice OsGTγ family member, OsGTγ-2, which directly interacted with the GT-1 element in the OsRAV2 promoter. OsGTγ-2 specifically targeted the nucleus, was mainly expressed in roots, sheathes, stems and seeds, and was induced by salinity, osmotic and oxidative stresses and abscisic acid (ABA). The seed germination rate, seedling growth and survival rate under salinity stress was improved in OsGTγ-2 overexpressing lines (PZmUbi::OsGTγ-2). In contrast, CRISPR/Cas9-mediated OsGTγ-2 knockout lines (osgtγ-2) showed salt-hypersensitive phenotypes. In response to salt stress, different Na+ and K+ acclamation patterns were observed in PZmUbi::OsGTγ-2 lines and osgtγ-2 plants were observed. The molecular mechanism of OsGTγ-2 in rice salt adaptation was also investigated. Several major genes responsible for ion transporting, such as the OsHKT2; 1, OsHKT1; 3 and OsNHX1 were transcriptionally regulated by OsGTγ-2. A subsequent yeast one-hybrid assay and EMSA indicated that OsGTγ-2 directly interacted with the promoters of OsHKT2; 1, OsNHX1 and OsHKT1; 3. Taken together, these results suggest that OsGTγ-2 is an important positive regulator involved in rice responses to salt stress and suggest a potential role for OsGTγ-2 in regulating salinity adaptation in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Borges OM, Lauro BN, Graciela C, Carina TZA, Beatriz WS, Helena BZM, Márcia MP (2012) Identification andin silicocharacterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genet Mol Biol 35:233–246

    Article  Google Scholar 

  • Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplan-Levy RN, Kilinc A, Smyth DR (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131:4035

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B (2009) Identification and characterization of Bph14, a gene conferring resistance to brown plant hopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhai C, Li H, Li J, Mei W, Gui H, Ni D, Song F, Li L, Zhang W (2012) An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep 31:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90:49–62

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xie K, Hou X, Hu H, Xiong L (2010) Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 283:157–169

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 45:146–159

    Article  CAS  PubMed  Google Scholar 

  • Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K (2009) Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21:54–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green PJ, Kay SA, Chua NH (1987) Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J 6:2543–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder J, Uozumi N (2015) HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 32:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2; 1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H (2012) A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Mol Biol 80:337–350

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, Wang H, Wang F, Li D, Mao D, Luan S, Liang M, Chen L (2018) 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci 9:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyeong Cheol P, Man Lyang K, Yun Hwan K, Joo Mi J, Jae Hyuk Y, Min Chul K, Chan Young P, Jae Cheol J, Byeong Cheol M, Ju Huck L (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  Google Scholar 

  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodrîguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C (2019) Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice 12:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplanlevy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors–light, stress and development. Trends Plant Sci 17:163–171

    Article  CAS  Google Scholar 

  • Li J, Qin RY, Li H, Xu RF, Yang YC, Ni DH, Ma H, Li L, Wei PC, Yang JB (2015) Low-temperature-induced expression of rice ureidoglycolate amidohydrolase is mediated by a C-repeat/dehydration-responsive element that specifically interacts with Rice C-repeat-binding factor 3. Front Plant Sci 6:1011

    PubMed  PubMed Central  Google Scholar 

  • Li X, Han H, Chen M, Yang W, Liu L, Li N, Ding X, Chu Z (2017) Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice. Plant Mol Biol 93:21–34

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol 53:444–452

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y (2017) BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci 8:44

    PubMed  PubMed Central  Google Scholar 

  • Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174:1747–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínezatienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Inaba T, Furuhashi H, Sasaki Y (2001) Trihelix DNA-binding Protein with specificities for two distinctcis-elements both important for light down-regulated and dark-inducible gene expression in higher plants. J Biol Chem 276:22238

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Ma X, Yu G, Wang Q, Wang L, Kong L, Kim W, Wang HW (2014) Evolutionary history of trihelix family and their functional diversification. DNA Res 21:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrígueznavarro A, Rubio F (2005) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  Google Scholar 

  • Rosas-Santiago P, Lagunas-Gómez D, Barkla B, Vera-Estrella R, Lalonde S, Jones A, Frommer W, Zimmermannova O, Sychrová H, Pantoja O (2015) Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1; 3. J Exp Bot 66:2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San SB, Guiderdoni E, Schippers JH (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, LourençO T, Abreu IA, Sebastiã NA, Fernandes L, Contreras-Moreira B, Oliveira MM (2013) OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol 82:439–455

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Guo S, Yang X, Bao Y, Tang H, Sun H, Huang J, Zhang H (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Rengasamy P, Mcdonald GK (2010) High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoaki H, Alex C, Tae Houn K, Min Jung H, Rie H, Ho-Yin L, Akio M, Hirohiko H, Gynheung A, Schroeder JI (2014) Rice OsHKT2; 1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Google Scholar 

  • Tseng I-C, Hong C-Y, Yu S-M, Ho T-HD (2013) Abscisic acid- and stress-induced highly proline-rich glycoproteins regulate root growth in rice. Plant Physiol 163:118–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XH, Li QT, Chen HW, Zhang WK, Ma B, Chen SY, Zhang JS (2014) Trihelix transcription factor GT - 4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biol 14:339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The rice high-affinity potassium transporter1; 1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168:1076–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H, Chan YY, Gosney MJ, Hasegawa PM, Mickelbart MV (2012) Poplar GTL1 Is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS ONE 7:e32925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zou H, Lei G, Wei W, Zhou Q, Niu C, Liao Y, Tian A, Ma B, Zhang W, Zhang J, Chen S (2009) Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE 4:e6898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9:e92913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Song L, Song J, Ouyang B, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z (2018) ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. Plant Sci 270:140–149

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Shannon MC, Grieve CM (2002) Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 127:235–245

    Article  CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Bmb Rep 42:486–492

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45

    Article  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018a) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217:1161–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fang J, Wu X, Dong L (2018b) Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L) under salt stress. BMC Plant Biol 18:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Liu H, Ji H, Wang Y, Dong B, Qiao Y, Liu M, Li X (2016) The wheat GT factor TaGT2L1D Negatively regulates drought tolerance and plant development. Sci Rep 6:27042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D-X (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Genetically Modified Breeding Major Projects (No. 2016ZX08010-002-008), the National Natural Science Foundation of China (No. 31501239 and No. 31701405), the National Key Research and Development Program (No. 2017YFD0301304) and the Natural Science Foundation of Anhui Province (No. 1708085QC60).

Author information

Authors and Affiliations

Authors

Contributions

XL, DCW, TS and JL conceived and designed the experiments. XL, TS, SX and RQ conducted experiments. HL and DXW analyzed data and produced the figures. MN, DXW, and JL wrote the manuscript.

Corresponding authors

Correspondence to Dexiang Wu or Juan Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession numbers

Sequence data from this article can be found in GenBank under the following accession numbers: OsACTIN1(Os03g0718100), OsNHX1(Os07g0666900), OsHKT2; 1(Os06g0701700), OsHKT1; 1(Os04g0607500), OsHKT1; 5(Os01g0307500), OsHKT1; 3(Os02g0175000), OsSOS1(Os12g0641100), OsABA8ox1(Os02g0703600), OsABA8ox2 (Os08g0472800), OsNCED2(Os12g0435200), OsNCED3(Os03g0645900), OsLEA3 (Os05g0542500), Rab16 (Os011g0454300).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wu, D., Shan, T. et al. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Plant Mol Biol 103, 545–560 (2020). https://doi.org/10.1007/s11103-020-01010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01010-1

Keywords

Navigation