Skip to main content
Log in

Gluten hydrolase gene silencing using RNAi and its effect on the Sunn pest growth and development

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

RNAi technology has been described as a tool to study gene function and is of great potential as a next-generation biopesticide. Thus, in the present study, we identified and sequenced the Sunn pest Gluten hydrolase (GH) gene partially. Then, evaluated GH-dsRNA effects on the GH expression of the fifth instar nymphs and adults, as well as, on the insect growth and development using topical and injection assays. Results indicated that the topical application of GH-dsRNA on the fifth instar nymph caused a severe reduction (99.9%) of gut GH expression in comparison with control and, at the same time, high induction of the salivary gland’s expression profile. Gene upregulation indicates that the insect compensates for the reduction of the one gene expression with the induction of a gene in the other tissue to meet its demand. Also, the GH expression profile in the gut and salivary glands were evaluated 6, 12, and 21-hour post injections. Results revealed that the GH expression profile of both gut and salivary glands was reduced early hours after injection, but their expression profile was recovered 21-hour post-treatment. Thus, the results showed that dsRNA does not have a systemic effect since gene knockdown was not persistent. GH-dsRNA also affected nymphal development time, adult weight, survivability, and adult emergence. These effects indicated that the GH gene plays an essential physiological role(s) in addition to having a role in food digestion. Therefore, RNAi technology has the potential to be used to develop novel strategies for Sunn pest IPM programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdellatef, E., Will, T., Koch, A., Imani, J., Vilcinskas, A., & Kogel, K. H. (2015). Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnology Journal, 13(6), 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Allahyari, M., Bandani, A. R., & Habibi-Rezaei, M. (2010). Subcellular fractionation of midgut cells of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae): enzyme markers of microvillar and perimicrovillar membranes. Journal of Insect Physiology, 56(7), 710–717.

    Article  CAS  PubMed  Google Scholar 

  • Amiri, A., & Bandani, A. R. (2013). Comparison of energy reserves in prediapause and diapausing adult Sun pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Journal of Agricultural Science and Technology, 15, 435–444.

    CAS  Google Scholar 

  • Amiri, A., Bandani, A. R., & Alizadeh, H. (2016). Molecular identification of cysteine and trypsin protease, effect of different hosts on protease expression, and RNAi mediated silencing of cysteine protease in the Sunn pest. Archives of Insect Biochemistry and Physiology, 91(4), 189–209.

    Article  CAS  PubMed  Google Scholar 

  • Angelini, D. R., Liu, P. Z., Hughes, C. L., & Kaufman, T. C. (2005). Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Developmental Biology, 287, 440–455.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, R. N., Santos, A., Pinto, F. S., Gontijo, N. F., Lehane, M. J., & Pereira, M. H. (2006). RNA interference of the salivary glands nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by derma ingestion or injection. Insect Biochemistry and Molecular Biology, 36, 683–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandani, A. R., Kazzazi, M., & Mehrabadi, M. (2009). Purification and characterization of midgut a-amylases of Eurygaster integriceps. Entomological Science, 12, 25–32.

    Article  Google Scholar 

  • Basnet, S., & Kamble, S. T. (2018). RNAi-Mediated Knockdown of vATPase subunits affects survival and reproduction of bed bugs (Hemiptera: Cimicidae). Journal of Medical Entomology,55(3), 540–546. https://doi.org/10.1093/jme/tjy001

    Article  CAS  PubMed  Google Scholar 

  • Biesiekierski, J. R. (2017). What is gluten? Journal of Gastroenterology and Hepatology, 32(1), 78–81.

  • Branch, A., & Shen, P. (2017). Central and peripheral regulation of appetite and food intake in drosophila. In R. .B. .S. Harris (Ed.), Chap. 2. Appetite and Food Intake: Central Control (2nd ed.). Boca Raton: CRC Press/Taylor and Francis.

  • Chen, H., Yin, Y., Feng, E., Xie, X., & Wang, Z. (2014). Structure and expression of a cysteine proteinase gene from Spodoptera litura and its response to biocontrol fungus Nomuraea rileyi. Insect Molecular Biology, 23(2), 255–256.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. u., Guo-Qing, L., Pin-Jun, W., & Qiang, F. u. (2017). Efficient RNA interference for three neuronally-expressed genes in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Journal of Asia Pacific Entomology, 20, 513–519.

  • Chen, J. X., Lyu, Z. H., Wang, C. Y., Cheng, J., & Lin, T. (2018). RNA interference of a trehalose-6-phosphate synthase gene reveals its roles in the biosynthesis of chitin and lipids in Heortia vitessoides (Lepidoptera: Crambidae). Insect Science. https://doi.org/10.1111/1744-7917.12650

    Article  PubMed  Google Scholar 

  • Deng, F., & Zhao, Z. (2014). Influence of catalase gene silencing on the survivability of Sitobion avenae. Archives of Insect Biochemistry and Physiology, 86(1), 46–57.

    CAS  PubMed  Google Scholar 

  • Dizlek, H., & Ozer, M. S. (2017). The effects of Sunn Pest (Eurygaster integriceps) damage ratios on bread making quality of wheat with and without additives. Quality Assurance and Safety of Crops and Foods, 9(1), 79–91.

    Article  CAS  Google Scholar 

  • Dolgikh, V. V., Senderskii, I. V., & Konarev, A. V. (2014). Production and properties of recombinant glutenin-hydrolyzing proteinases from Eurygaster integriceps Put. Prikl Biokhim Mikrobiol Journal, 50(5), 466–474.

  • Gordon, K. H. J., & Waterhouse, P. M. (2007). RNAi for insect-proof plants. Nature Biotechnology, 25, 1231–1232.

    Article  CAS  PubMed  Google Scholar 

  • Gorman, M. J., Andreeva, O. V., & Paskewitz, S. M. (2000). Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene, 251, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Griebler, M., Westerlund, S. A., Hoffmann, K. H., & Meyerring-Vos, M. (2008). RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. Journal of Insect Physiology, 54(6), 997–1007.

    Article  CAS  PubMed  Google Scholar 

  • Gu, L., & Knipple, D. C. (2013). Recent advances in RNA interference research in insects: implications for future insect pest management strategies. Crop Protection, 45, 36–40.

    Article  CAS  Google Scholar 

  • Han, P., Fan, J., Liu, Y., Cuthbertson, A. G. S., Yan, S., et al. (2014). Ran-Mediated knockdown of serine protease inhibitor genes increases the mortality of Plutella xylostella challenged by Destruxin A. PLoS ONE,9(5), e97863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huvenne, H., & Smagghe, G. (2010). Mechanisms of derma uptake in insects and potential of Ran for pest control: a review. Journal of Insect Physiology, 56, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Jaubert-Possamai, S., Le Trionnaire, G., Bonhomme, J., Christophides, G. K., Rispe, C., & Tagu, D. (2007). Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnology, 28, 7:63.

  • Kazzazi, M., Bandani, A. R., & Hosseinkhani, S. (2005). Biochemical characterization of a-amylase of the Sunn pest, Eurygaster integriceps. Entomological Science, 8, 371–377.

    Article  Google Scholar 

  • Khan, A. M., Ashfaq, M., Khan, A. A., Naseem, M. T., & Mansoor, S. (2018). Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae). Insect Science, (5), 778–786. https://doi.org/10.1111/1744-7917.12455.

  • Konarev, A. V., Beaudoin, F., Marsh, J., Vilkova, N. A., Nefedova, L. I., Sivri, D., Köksel, H., Shewry, P. R., & Lovegrove, A. (2011). Characterization of a glutenin-specific serine proteinase of Sun bug Eurygaster integricepts Put. Journal of Agricultural and Food Chemistry, 59(6), 2462–2470.

    Article  CAS  PubMed  Google Scholar 

  • Konarev, lV., Konarev, A. V., Nefedova, L. I., Gubareva, N. K., & Sivri Ozay, D. (2013). Analysis of gluten hydrolyzing proteinase polymorphism in wheat grains damaged by Sunn Pest Eurygaster integriceps Put. and Related Bugs. Doklady Rossiiskoi Akademii Sel’skokhozyaistvennykh Nauk, 5, 7–11.

  • Konarev, A., Dolgikh, V., Senderskiy, I., Konarev, A., Kapustkina, A., & Lovegrove, A. (2019). Characterisation of proteolytic enzymes of Eurygaster integriceps Put. (Sunn bug), a major pest of cereals. Journal of Asia-Pacific Entomology,22(1), 379–385. https://doi.org/10.1016/j.aspen.2019.02.001

    Article  Google Scholar 

  • Lee, D., Orchard, I., & Lange, A. B. (2013). Evidence for a conserved CCAP-signaling pathway controlling ecdysis in a hemimetabolous insect, Rhodnius prolixus. Frontiers in Neuroscience, 7, 207.

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Wang, X. P., Wang, M. Q., Ma, W. H., & Hua, H. X. (2013). Advances in the use of the RNA interference technique in Hemiptera. Insect Science,20(1), 31–39. https://doi.org/10.1111/j.1744-7917.2012.01550.x

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Yang, B., Zhang, A., Ding, D., & Wang, G. (2019). Plant-Mediated RNAi for Controlling Apolygus lucorum. Frontiers in Plant Science,10, 64. https://doi.org/10.3389/fpls.2019.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Jaouannet, M., Dempsey, D. A., Imani, J., Coustau, C., & Kogel, K. H. (2020). RNA-based technologies for insect control in plant production. Biotechnology Advances,39, 107463. https://doi.org/10.1016/j.biotechadv

    Article  CAS  PubMed  Google Scholar 

  • Macedo, M. L. R., & Freire, M. d. G. M. (2011). Insect digestive enzymes as a target for pest control. Invertebrate Survival Journal, 8(2), 190–198.

  • Majerowicz, D., Alves-Bezerra, M., Logullo, R., Fonseca-de-Souza, A. L., Meyer-Fernandes, J. R., Braz, G. R., & Gondim, K. C. (2011). Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Molecular Biology, 20(6), 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Manoury, B., Roghanian, A., & Sallenave, J. M. (2011). Serine and Cysteine Proteases and Their Inhibitors as Antimicrobial Agents and Immune Modulators. Vergnolle N. (Ed.) pp. 27–50 in Chignard M. (Ed.) Proteases and Their Receptors in Inflammation, Progress in Inflammation Research.

  • McLoughlin, A. G., Walker, P. L., Wytinck, N., Sullivan, D. S., Whyard, S., & Belmonte, M. F. (2018). Developing new RNA interference technologies to control fungal pathogens. Canadian Journal of Plant Pathology, 40, 325–335.

    Article  CAS  Google Scholar 

  • Mehrabadi, M., Bandani, A. R., & Saadati, F. (2010). Inhibition of Sunn Pest, Eurygaster integriceps, α-amylases by α-amylase inhibitors (TαAI) from triticale. Journal of Insect Science, 10, (179).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrabadi, M., Bandani, A. R., Allahyari, M., & Serrao, J. E. (2012). The Sunn Pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) digestive tract: histology, ultrastructure and its physiological significance. Micron (Oxford, England : 1993), 43(5), 631–637.

    Article  Google Scholar 

  • Mehrabadi, M., Bandani, A. R., & Dastranj, M. (2014). Salivary digestive enzymes of the wheat bug, Eurygaster integriceps (Insecta: Hemiptera: Scutelleridae). Comptes Rendus Biologies, 337, 373–382.

    Article  PubMed  Google Scholar 

  • Meng, J., Lei, J., Davitt, A., Holt, J. R., Huang, J., Gold, R., et al. (2018). Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology. Insect Science. https://doi.org/10.1111/1744-7917.12604

  • Mizunami, M., & Matsumoto, Y. (2017). Roles of octopamine and dopamine neurons for mediating appetitive and aversive signals in pavlovian conditioning in crickets. Frontiers in Physiology,8, 1027. https://doi.org/10.3389/fphys.2017.01027

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogilicherla, K., Howell, J. L., & Palli, S. R. (2018). Improving RNAi in the brown marmorated stink bug: identification of target genes and reference genes for RT-qPCR. Scientific Reports,8, 3720. https://doi.org/10.1038/s41598-018-22035-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niehl, A., Soininen, M., Poranen, M. M., & Heinlein, M. (2018). Synthetic biology approach for plant protection using dsRNA. Plant Biotechnology Journal,16(9), 1679–1687.

    Article  CAS  PubMed Central  Google Scholar 

  • Niu, J., Yang, W. J., Tian, Y., Fan, J. Y., Ye, C., Shang, F., et al. (2019). Topical dsRNA delivery induces gene silencing and mortality in the pea aphid. Pest Managegment Science. https://doi.org/10.1002/ps.5457

    Article  Google Scholar 

  • Paim, R. M., Araujo, R. N., Lehane, M. J., Gontijo, N. F., & Pereira, M. H. (2013). Application of RNA interference in triatomine (Hemiptera: Reduviidae) studies. Insect Science,20(1), 40–52. https://doi.org/10.1111/j.1744-7917.2012.01540.x

    Article  CAS  PubMed  Google Scholar 

  • Paim, R. M., Araujo, R. N., Lehane, M. J., Gontijo, N. F., & Pereira, M. H. (2013b). Long-term effects and parental Ran in the blood feeder Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochemistry and Molecular Biology, 43(11), 1015–1020.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, A., Carneiro, N., & Siegfried, B. (2016). Comparative susceptibility of southern and western corn rootworm adults and larvae to vATPase-A and Snf7 dsRNAs. Journal of RNAi and Gene Silencing, 12, 528–535.

    Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30, e36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosa, C., Kuo, Y. W., Wuriyanghan, H., & Falk, B. W. (2018). RNA interference mechanisms and applications in plant pathology. Annual Review of Phytopathology, 56, 581–610.

    Article  CAS  PubMed  Google Scholar 

  • Saadati, F., & Bandani, A. R. (2011). Effects of serine protease inhibitors on growth and development and digestive serine proteinases of the Sunn Pest, Eurygaster integriceps. Journal of Insect Science, 11, 1–12.

    Article  Google Scholar 

  • San Miguel, K., & Scott, J. G. (2016). The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Management Science, 72, 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Sapountzis, P., Duport, G., Balmand, S., Jaubert-Possamai, S., Febvay, G., Charles, H., et al. (2014). New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments. Insect Biochemistry and Molecular Biology, 51, 20e32.

    Article  Google Scholar 

  • Sato, K., Miyata, K., Ozawa, S., & Hasegawa, K. (2019). Systemic RNAi of V-ATPase subunit B causes molting defect and developmental abnormalities in Periplaneta fuliginosa. Insect Science,26(4), 721–731. https://doi.org/10.1111/1744-7917.12565

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B., Smagghe, G., et al. (2013). Towards the elements of successful insect RNAi. Journal of Insect Physiology, 59(12), 1212–1221.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Gupta, M., Pandher, S., Kaur, G., Rathore, P., & Palli, S. R. (2018). Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida). PLoS One,13(1), e0191116. https://doi.org/10.1371/journal.pone.0191116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taning, C. N. T., Christiaens, O., Berkvens, N., et al. (2016). Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. Journal of Pest Science,89, 803. https://doi.org/10.1007/s10340-016-0736-9

    Article  Google Scholar 

  • Upadhyay, S. K., Chandrashekar, K., Thakur, N., Verma, P. C., Borgio, J. F., Singh, P. K., & Tuli, R. (2011). RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Biosciences, 36(1), ,153–161.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. X., Feng, Z. J., Chen, Z. S., Zhang, Z. F., Zhang, Y., & Liu, T. X. (2019). Use of tyrosine hydroxylase RNAi to study Megoura viciae (Hemiptera: Aphididae) sequestration of its host’s l-DOPA for body melanism. Journal of Insect Physiology,114, 136–144. https://doi.org/10.1016/j.jinsphys.2019.03.007

  • Wynant, N., Santos, D., Verdonck, R., Spit, J., Wielendaele, P. V., & Broeck, J. V. (2014). Identification, functional characterization and phylogenetic analysis of double-stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 46, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Yu, N., Christiaens, O., Liu, J., Niu, J., Cappelle, K., Caccia, S., et al. (2013). Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Science,20(1), 4–14. https://doi.org/10.1111/j.1744-7917.2012.01534.x

  • Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., & He, G. (2011). Knockdown of midgut genes by derma-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLOS ONE, 6, e20504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Han, R. C. (2018). A saliva protein of Va rroa mites contributes to the toxicity toward Apis cerana and the DWV elevation in A. mellifera. Scientific Reports, 8, 3384.

    Article  Google Scholar 

  • Zhou, Y. L., Zhu, X. Q., Gu, S. H., Cui, H. H., Guo, Y. Y., Zhou, J. J., & Zhang, Y. J. (2014). Silencing in Apolygus lucorum of the olfactory coreceptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals. Journal of Insect Physiology, 60, 31–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant (No. 89001605) from the Iran National Science Foundation (INSF). The authors have no conflict of interest to declare. The authors confirm that there are no disputes over the ownership of the data presented in the paper, and all contributions have been attributed appropriately, via co-authorship or acknowledgment, as appropriate to the situation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Bandani.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Bandani, A.R. Gluten hydrolase gene silencing using RNAi and its effect on the Sunn pest growth and development. Phytoparasitica 48, 575–587 (2020). https://doi.org/10.1007/s12600-020-00821-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00821-8

Keywords

Navigation