Skip to main content

Advertisement

Log in

Muscle torque generators in multibody dynamic simulations of optimal sports performance

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Using detailed musculoskeletal models in computer simulations of human movement can provide insights into individual muscle and joint loading; however, these muscle models increase problem dimensionality and require difficult-to-fit parameters. Here, we provide a brief overview of a muscle model alternative, muscle torque generators (MTGs), and highlight how MTG functions have been used by researchers to generate accurate dynamic simulations of optimal sports performance. Multibody dynamic models of a golf drive, track cycling, and wheelchair propulsion were designed and actuated using MTGs. Each MTG was effectively a rotational, single muscle equivalent that contained joint angle/velocity scaling and passive elements to mimic Hill-type muscle model behaviour. Optimal control algorithms were used to predict how each model would execute their respective sports task; these results were compared against experimental data collected from elite athletes. Good agreement between simulated and experimental movement trajectories was observed, with relatively low computational times required for convergence of the MTG-driven multibody simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexander, R.M.: Optimum take-off techniques for high and long jumps. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 329(1252), 3–10 (1990). https://doi.org/10.1098/rstb.1990.0144

    Article  Google Scholar 

  2. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2(3), 201–231 (1999). https://doi.org/10.1080/10255849908907988

    Article  Google Scholar 

  3. Anderson, D.E., Madigan, M.L., Nussbaum, M.A.: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40(14), 3105–3113 (2007). https://doi.org/10.1016/j.jbiomech.2007.03.022

    Article  Google Scholar 

  4. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–279 (2010). https://doi.org/10.1007/s10439-009-9852-5

    Article  Google Scholar 

  5. Balzerson, D., Banerjee, J., McPhee, J.: A three-dimensional forward dynamic model of the golf swing optimized for ball carry distance. Sports Eng. 19(4), 237–250 (2016). https://doi.org/10.1007/s12283-016-0197-7

    Article  Google Scholar 

  6. Bastian, A.J., Zackowski, K.M., Thach, W.T.: Cerebellar ataxia: torque deficiency or torque mismatch between joints? J. Neurophysiol. 83(5), 3019–3030 (2000). https://doi.org/10.1152/jn.2000.83.5.3019

    Article  Google Scholar 

  7. Bernstein, N.: The Co-ordination and Regulation of Movements. Pergamon Press, London (1967)

    Google Scholar 

  8. Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn. 11(5), 054,502 (2016). https://doi.org/10.1115/1.4033658

    Article  Google Scholar 

  9. Brown, C., McPhee, J.: Predictive forward dynamic simulation of manual wheelchair propulsion on a rolling dynamometer. ASME J. Biomech. Eng. 142(7), 071,008 (2020). https://doi.org/10.1115/1.4046298

    Article  Google Scholar 

  10. Buffi, J.H., Werner, K., Kepple, T., Murray, W.M.: Computing muscle, ligament, and osseous contributions to the elbow varus moment during baseball pitching. Ann. Biomed. Eng. 43(2), 404–415 (2015). https://doi.org/10.1007/s10439-014-1144-z

    Article  Google Scholar 

  11. Cleather, D.I., Bull, A.M.J.: Lower-extremity musculoskeletal geometry affects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc. Inst. Mech. Eng., H J. Eng. Med. 224(9), 1073–1083 (2010). https://doi.org/10.1243/09544119JEIM731

    Article  Google Scholar 

  12. De Groote, F., Kinney, A.L., Rao, A.V., Fregly, B.J.: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10), 2922–2936 (2016). https://doi.org/10.1007/s10439-016-1591-9

    Article  Google Scholar 

  13. De Pieri, E., Lund, M.E., Gopalakrishnan, A., Rasmussen, K.P., Lunn, D.E., Ferguson, S.J.: Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction. PLoS ONE 13(9), e0204, 109 (2018). https://doi.org/10.1371/journal.pone.0204109

    Article  Google Scholar 

  14. Domire, Z.J., Challis, J.H.: The influence of an elastic tendon on the force producing capabilities of a muscle during dynamic movements. Comput. Methods Biomech. Biomed. Eng. 10(5), 337–341 (2007). https://doi.org/10.1080/10255840701379562

    Article  Google Scholar 

  15. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  16. Fukashiro, S., Hay, D.C., Nagano, A.: Biomechanical behavior of muscle-tendon complex during dynamic human movements. J. Appl. Biomech. 22(2), 131–147 (2006). https://doi.org/10.1123/jab.22.2.131

    Article  Google Scholar 

  17. Fuss, F.K.: Influence of mass on the speed of wheelchair racing. Sports Eng. 12(1), 41–53 (2009). https://doi.org/10.1007/s12283-009-0027-2

    Article  Google Scholar 

  18. Garner, B.A., Pandy, M.G.: Musculoskeletal model of the upper limb based on the visible human male dataset. Comput. Methods Biomech. Biomed. Eng. 4(2), 93–126 (2001). https://doi.org/10.1080/10255840008908000

    Article  Google Scholar 

  19. Gidley, A.D.: The influence of musculoskeletal geometry on the metabolic cost of pedaling. PhD Thesis, University of Massachusetts Amherst (2016)

  20. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184(1), 170–192 (1966). https://doi.org/10.1113/jphysiol.1966.sp007909

    Article  Google Scholar 

  21. Haering, D., Pontonnier, C., Bideau, N., Nicolas, G., Dumont, G.: Using torque-angle and torque-velocity models to characterize elbow mechanical function: modeling and applied aspects. J. Biomech. Eng. 141(8), 084,501 (2019). https://doi.org/10.1115/1.4043447

    Article  Google Scholar 

  22. Heitmann, S., Ferns, N., Breakspear, M.: Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb. Front. Neurobot. 5, 5 (2011). https://doi.org/10.3389/fnbot.2011.00005

    Article  Google Scholar 

  23. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B, Biol. Sci. 126(843), 136–195 (1938). https://doi.org/10.1098/rspb.1938.0050

    Article  Google Scholar 

  24. Hoang, P.D., Gorman, R.B., Todd, G., Gandevia, S.C., Herbert, R.D.: A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J. Biomech. 38(6), 1333–1341 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.046

    Article  Google Scholar 

  25. Hume, P.A., Keogh, J., Reid, D.: The role of biomechanics in maximising distance and accuracy of golf shots. Sports Med. 35(5), 429–449 (2005). https://doi.org/10.2165/00007256-200535050-00005

    Article  Google Scholar 

  26. Jansen, C., McPhee, J.: Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control. Multibody Syst. Dyn. 49(1), 53–70 (2020). https://doi.org/10.1007/s11044-020-09723-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, Y., Van Wouwe, T., De Groote, F., Liu, C.K.: Synthesis of biologically realistic human motion using joint torque actuation. ACM Trans. Graph. 38(4), 1–12 (2019). https://doi.org/10.1145/3306346.3322966

    Article  Google Scholar 

  28. Katz, B.: The relation between force and speed in muscular contraction. J. Physiol. 96(1), 45–64 (1939). https://doi.org/10.1113/jphysiol.1939.sp003756

    Article  Google Scholar 

  29. Kelly, S.B., Brown, L.E., Hooker, S.P., Swan, P.D., Buman, M.P., Alvar, B.A., Black, L.E.: Comparison of concentric and eccentric bench press repetitions to failure. J. Strength Cond. Res. 29(4), 1027–1032 (2015). https://doi.org/10.1519/JSC.0000000000000713

    Article  Google Scholar 

  30. Kentel, B.B., King, M.A., Mitchell, S.R.: Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes. J. Appl. Biomech. 27(4), 345–354 (2011). https://doi.org/10.1123/jab.27.4.345

    Article  Google Scholar 

  31. King, M.A., Yeadon, M.R.: Determining subject-specific torque parameters for use in a torque-driven simulation model of dynamic jumping. J. Appl. Biomech. 18(3), 207–217 (2002). https://doi.org/10.1123/jab.18.3.207

    Article  Google Scholar 

  32. King, M.A., Wilson, C., Yeadon, M.R.: Evaluation of a torque-driven model of jumping for height. J. Appl. Biomech. 22(4), 264–274 (2006)

    Google Scholar 

  33. Kordi, M., Goodall, S., Barratt, P., Rowley, N., Leeder, J., Howatson, G.: Relation between peak power output in sprint cycling and maximum voluntary isometric torque production. J. Electromyogr. Kinesiol. 35, 95–99 (2017). https://doi.org/10.1016/j.jelekin.2017.06.003

    Article  Google Scholar 

  34. Lichtwark, G.A., Barclay, C.J.: The influence of tendon compliance on muscle power output and efficiency during cyclic contractions. J. Exp. Biol. 213(5), 707–714 (2010). https://doi.org/10.1242/jeb.038026

    Article  Google Scholar 

  35. MacKenzie, S.J., Sprigings, E.J.: A three-dimensional forward dynamics model of the golf swing. Sports Eng. 11(4), 165–175 (2009). https://doi.org/10.1007/s12283-009-0020-9

    Article  Google Scholar 

  36. McGill, S., Seguin, J., Bennett, G.: Passive stiffness of the lumbar torso in flexion, extension, lateral bending, and axial rotation. Effect of belt wearing and breath holding. Spine 19(6), 696–704 (1994). https://doi.org/10.1097/00007632-199403001-00009

    Article  Google Scholar 

  37. McNally, W., McPhee, J.: Dynamic optimization of the golf swing using a six degree-of-freedom biomechanical model. Proceedings 2(6), 243 (2018). https://doi.org/10.3390/proceedings2060243

    Article  Google Scholar 

  38. Millard, M., Uchida, T., Seth, A., Delp, S.L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135(2), 021,005 (2013). https://doi.org/10.1115/1.4023390

    Article  Google Scholar 

  39. Millard, M., Emonds, A.L., Harant, M., Mombaur, K.: A reduced muscle model and planar musculoskeletal model fit for the simulation of whole-body movements. J. Biomech. 89, 11–20 (2019). https://doi.org/10.1016/j.jbiomech.2019.04.004

    Article  Google Scholar 

  40. Myers, J., Lephart, S., Tsai, Y.S., Sell, T., Smoliga, J., Jolly, J.: The role of upper torso and pelvis rotation in driving performance during the golf swing. J. Sports Sci. 26(2), 181–188 (2008). https://doi.org/10.1080/02640410701373543

    Article  Google Scholar 

  41. Norman-Gerum, V.T.: Predictive dynamic simulation of healthy sit-to-stand movement. PhD Thesis, University of Waterloo, Waterloo, Canada (2019)

  42. Pacejka, H.B.: Tyre and vehicle dynamics (2006). http://site.ebrary.com/id/10674718. OCLC: 845660293

  43. Pandy, M.G., Anderson, F.C., Hull, D.G.: A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J. Biomech. Eng. 114(4), 450–460 (1992)

    Google Scholar 

  44. Patterson, M.A., Rao, A.V.: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1–37 (2014). https://doi.org/10.1145/2558904

    Article  MathSciNet  MATH  Google Scholar 

  45. Porsa, S., Lin, Y.C., Pandy, M.G.: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann. Biomed. Eng. 44(8), 2542–2557 (2016). https://doi.org/10.1007/s10439-015-1538-6

    Article  Google Scholar 

  46. Quintavalla, S.: A generally applicable model for the aerodynamic behavior of golf balls. In: Science and Golf IV, 1st edn. Routledge, Abingdon-on-Thames (2003)

    Google Scholar 

  47. Riener, R., Edrich, T.: Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32(5), 539–544 (1999)

    Google Scholar 

  48. Savelberg, H.H.C.M., Meijer, K.: Contribution of mono- and biarticular muscles to extending knee joint moments in runners and cyclists. J. Appl. Physiol. 94(6), 2241–2248 (2003). https://doi.org/10.1152/japplphysiol.01001.2002

    Article  Google Scholar 

  49. Sawicki, G.S., Lewis, C.L., Ferris, D.P.: It pays to have a spring in your step. Exerc. Sport Sci. Rev. 37(3), 130–138 (2009). https://doi.org/10.1097/JES.0b013e31819c2df6

    Article  Google Scholar 

  50. Sherman, M.A., Seth, A., Delp, S.L.: What is a moment arm? Calculating muscle effectiveness in biomechanical models using generalized coordinates. In: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, vol. 7B. American Society of Mechanical Engineers, Portland (2013). https://doi.org/10.1115/DETC2013-13633

    Chapter  Google Scholar 

  51. Siebert, T., Rode, C., Herzog, W., Till, O., Blickhan, R.: Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol. Cybern. 98(2), 133–143 (2008). https://doi.org/10.1007/s00422-007-0197-6

    Article  MathSciNet  MATH  Google Scholar 

  52. Slowik, J.S., Neptune, R.R.: A theoretical analysis of the influence of wheelchair seat position on upper extremity demand. Clin. Biomech. 28(4), 378–385 (2013). https://doi.org/10.1016/j.clinbiomech.2013.03.004

    Article  Google Scholar 

  53. Suzuki, Y., Nomura, T., Casadio, M., Morasso, P.: Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J. Theor. Biol. 310, 55–79 (2012). https://doi.org/10.1016/j.jtbi.2012.06.019

    Article  MathSciNet  MATH  Google Scholar 

  54. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125(1), 70–77 (2003). https://doi.org/10.1115/1.1531112

    Article  Google Scholar 

  55. van Ingen Schenau, G.J., Dorssers, W.M., Welter, T.G., Beelen, A., de Groot, G., Jacobs, R.: The control of mono-articular muscles in multijoint leg extensions in man. J. Physiol. 484(1), 247–254 (1995). https://doi.org/10.1113/jphysiol.1995.sp020662

    Article  Google Scholar 

  56. van Soest, A.J., Bobbert, M.F.: The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69(3), 195–204 (1993). https://doi.org/10.1007/BF00198959

    Article  Google Scholar 

  57. Wells, R.P.: Mechanical energy costs of human movement: an approach to evaluating the transfer possibilities of two-joint muscles. J. Biomech. 21(11), 955–964 (1988). https://doi.org/10.1016/0021-9290(88)90134-0

    Article  Google Scholar 

  58. Westing, S.H., Cresswell, A.G., Thorstensson, A.: Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur. J. Appl. Physiol. Occup. Physiol. 62(2), 104–108 (1991). https://doi.org/10.1007/bf00626764

    Article  Google Scholar 

  59. Williams, C.A.: Maximum concentric, eccentric and isometric strength of trunk flexor and extensor muscles in athletes. University of Alberta Libraries (1992). https://doi.org/10.7939/R3VX0672H

  60. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, Hoboken (2009). OCLC: ocn318408191

    Google Scholar 

  61. Winters, J.M.: Hill-based muscle models: a systems engineering perspective. In: Winters, J.M., Woo, S.L.Y. (eds.) Multiple Muscle Systems, pp. 69–93. Springer New York, New York (1990)

    Google Scholar 

  62. Winters, J.M., Stark, L.: Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng. 32(10), 826–839 (1985). https://doi.org/10.1109/TBME.1985.325498

    Article  Google Scholar 

  63. Winters, J.M., Stark, L.: Muscle models: what is gained and what is lost by varying model complexity. Biol. Cybern. 55(6), 403–420 (1987). https://doi.org/10.1007/BF00318375

    Article  MathSciNet  Google Scholar 

  64. Yamaguchi, G.T.: Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. Springer, Berlin (2006). OCLC: 150263239

    MATH  Google Scholar 

  65. Yeadon, M.R., King, M.A., Wilson, C.: Modelling the maximum voluntary joint torque/angular velocity relationship in human movement. J. Biomech. 39(3), 476–482 (2006). https://doi.org/10.1016/j.jbiomech.2004.12.012

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by McPhee’s Tier I Canada Research Chair in System Dynamics. Additional thanks for experimental participation and data collection by i) PING Inc., ii) Mike Patton and Will George of Cycling Canada, members of the Canadian track cycling team, and iii) Canadian Sports Institute Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keaton A. Inkol.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inkol, K.A., Brown, C., McNally, W. et al. Muscle torque generators in multibody dynamic simulations of optimal sports performance. Multibody Syst Dyn 50, 435–452 (2020). https://doi.org/10.1007/s11044-020-09747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09747-9

Keywords

Navigation