Skip to main content
Log in

The Expression and Localization of Histone Acetyltransferases HAT1 and PCAF in Neurons and Astrocytes of the Photothrombotic Stroke-Induced Penumbra in the Rat Brain Cortex

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is one of the leading reasons of human death. Ischemic penumbra that surrounds the stroke-induced infarction core is potentially salvageable, but molecular mechanisms of its formation are poorly known. Histone acetylation induces chromatin decondensation and stimulates gene expression. We studied the changes in the levels and localization of histone acetyltransferases HAT1 and PCAF in penumbra after photothrombotic stroke (PTS, a stroke model). In PTS, laser irradiation induces local occlusion of cerebral vessels after photosensitization by Rose Bengal. HAT1 and PCAF are poorly expressed in normal cortical neurons and astrocytes, but they are overexpressed 4–24 h after PTS. Their predominant localization in neuronal nuclei did not change after PTS, but their levels in the astrocyte nuclei significantly increased. Western blotting showed the increase of HAT1 and PCAF levels in the cytoplasmic fraction of the PTS-induced penumbra. In the nuclear fraction, PCAF level did not change, and HAT1 was overexpressed only at 24 h post-PTS. PTS-induced upregulation of HAT1 and PCAF in the penumbra was mainly associated with overexpression in the cytoplasm of neurons and especially astrocytes. HAT1 and PCAF did not co-localize with TUNEL-positive cells that indicated their nonparticipation in PTS-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. https://doi.org/10.1016/j.neuron.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hankey GJ (2017) Stroke. Lancet 389:641–654. https://doi.org/10.1016/S0140-6736(16)30962-X

    Article  PubMed  Google Scholar 

  3. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. https://doi.org/10.1111/j.1749-6632.2012.06668.x

    Article  PubMed  Google Scholar 

  4. Manning NW, Campbell BC, Oxley TJ, Chapot R (2014) Acute ischemic stroke: time, penumbra, and reperfusion. Stroke 45:640–644. https://doi.org/10.1161/STROKEAHA.113.003798

    Article  PubMed  Google Scholar 

  5. Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    Article  PubMed  Google Scholar 

  6. Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR (2003) Genomics of the periinfarct cortex after focal cerebral ischemia. J Cereb Blood Flow Metab 23:786–810

    Article  CAS  PubMed  Google Scholar 

  7. Küry P, Schroeter M, Jander S (2004) Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex. Eur J Neurosci 19:1708–1720

    Article  PubMed  Google Scholar 

  8. Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarct core in rat cerebral cortex. Biochem Mosc 80:790–799

    Article  CAS  Google Scholar 

  9. Demyanenko S, Uzdensky A (2017) Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol Neurobiol 54:6839–6856. https://doi.org/10.1007/s12035-017-0736-7

    Article  CAS  PubMed  Google Scholar 

  10. Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A (2017) Photothrombotic infarct in the rat brain cortex: protein profile and morphological changes in penumbra. Mol Neurobiol 54:4172–4188. https://doi.org/10.1007/s12035-016-9964-5

    Article  CAS  PubMed  Google Scholar 

  11. Uzdensky AB (2018) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res 9:437–451. https://doi.org/10.1007/s12975-017-0593-8

    Article  PubMed  Google Scholar 

  12. Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702. https://doi.org/10.1007/s10495-019-01556-6

    Article  CAS  PubMed  Google Scholar 

  13. Kouzarides T, Berger SL (2006) Chromatin modifications and mechanisms. In: Allis, C.D., Jenuwein, T., Reinberg, D. (Eds), Epigenetics. Cold Spring Harbor Laboratory Press, pp.191-209

  14. Konsoula Z, Barile FA (2012) Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 66:215–220. https://doi.org/10.1016/j.vascn.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031. https://doi.org/10.1016/j.cell.2009.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao H, Han Z, Ji X, Luo Y (2016) Epigenetic regulation of oxidative stress in ischemic stroke. Aging Dis 7:295–306. https://doi.org/10.14336/AD.2015.1009

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L (2017) The emerging role of epigenetics in cerebral ischemia. Mol Neurobiol 54:1887–1905. https://doi.org/10.1007/s12035-016-9788-3

    Article  CAS  PubMed  Google Scholar 

  18. Demyanenko S, Uzdensky A (2019) Epigenetic alterations induced by photothrombotic stroke in the rat cerebral cortex: deacetylation of histone H3, upregulation of histone deacetylases and histone acetyltransferases. Int J Mol Sci. https://doi.org/10.3390/ijms20122882

  19. Demyanenko SV, Dzreyan VA, Neginskaya MA, Uzdensky AB (2020) Expression of histone deacetylases hdac1 and hdac2 and their role in apoptosis in the penumbra induced by photothrombotic stroke. Mol Neurobiol 57:226–238. https://doi.org/10.1007/s12035-019-01772-w

    Article  CAS  PubMed  Google Scholar 

  20. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412. https://doi.org/10.4161/cc.28401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  22. Manders EM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  PubMed  Google Scholar 

  23. Yang X, Li L, Liang J, Shi L, Yang J, Yi X, Zhang D, Han X et al (2013) Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem 288:18271–18282. https://doi.org/10.1074/jbc.M113.473199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim DA, Suárez-Fariñas M, Naef F, Hacker CR, Menn B, Takebayashi H, Magnasco M, Patil N et al (2006) In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis. Mol Cell Neurosci 31:131–148. https://doi.org/10.1016/j.mcn.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  25. Santos-Rosa H, Valls E, Kouzarides T, Martínez-Balbás M (2003) Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res 31:4285–4292. https://doi.org/10.1093/nar/gkg655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grégoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E et al (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27:1280–1295. https://doi.org/10.1128/MCB.00882-06

    Article  CAS  PubMed  Google Scholar 

  27. Grossman SR (2001) p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem 268:2773–2778

    Article  CAS  PubMed  Google Scholar 

  28. Mitchnick KA, Creighton SD, Cloke JM, Wolte M, Zaik O, Christen B, Van Tiggelen M, Kalisch BE et al (2016) Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory. Genes Brain Behav 15:542–557. https://doi.org/10.1111/gbb.12303

    Article  CAS  PubMed  Google Scholar 

  29. Merschbaecher K, Hatko L, Folz J, Mueller U (2016) Inhibition of different histone acetyltransferases (HATs) uncovers transcription-dependent and independent acetylation-mediated mechanisms in memory formation. Learn Mem 23:83–89. https://doi.org/10.1101/lm.039438.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puttagunta R, Tedeschi A, Sória MG, Herver A, Lindner R, Rathore KI, Gaub P, Joshi Y et al (2014) PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 5:3527. https://doi.org/10.1038/ncomms4527

    Article  CAS  PubMed  Google Scholar 

  31. Park SY, Lee YH, Seong AR, Lee J, Jun W, Yoon HG (2013) Selective inhibition of PCAF suppresses microglial-mediated β-amyloid neurotoxicity. Int J Mol Med 32:469–475. https://doi.org/10.3892/ijmm.2013.1407

    Article  CAS  PubMed  Google Scholar 

  32. Li HL, Zhang NN, Lin HY, Yu Y, Cai QY, Ma LX, Ding SH (2014) Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neurosci 15:58. https://doi.org/10.1186/1471-2202-15-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patience MJ, Zouikr I, Jones K, Clarkson AN, Isgaard J, Johnson SJ, Walker FR, Nilsson M (2015) Photothrombotic stroke induces persistent ipsilateral and contralateral astrogliosis in key cognitive control nuclei. Neurochem Res 40:362–371. https://doi.org/10.1007/s11064-014-1487-8

    Article  CAS  PubMed  Google Scholar 

  34. Sims NR, Yew WP (2017) Reactive astrogliosis in stroke: contributions of astrocytes to recovery of neurological function. Neurochem Int 107:88–103. https://doi.org/10.1016/j.neuint.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  35. Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M (2019) Astrocyte activation and reactive gliosis—a new target in stroke? Neurosci Lett 689:45–55. https://doi.org/10.1016/j.neulet.2018.07.021

    Article  CAS  PubMed  Google Scholar 

  36. Yildirim F, Ji S, Kronenberg G, Barco A, Olivares R, Benito E, Dirnagl U, Gertz K et al (2014) Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLoS One 9:e95465. https://doi.org/10.1371/journal.pone.0095465

    Article  PubMed  PubMed Central  Google Scholar 

  37. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339. https://doi.org/10.1161/STROKEAHA.108.531632

    Article  PubMed  Google Scholar 

  38. Onténiente B, Couriaud C, Braudeau J, Benchoua A, Guégan C (2003) The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy. Biochem Pharmacol 66:1643–1649. https://doi.org/10.1016/s0006-2952(03)00538-0

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (grant no. 18-15-00110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Uzdensky.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demyanenko, S.V., Dzreyan, V.A. & Uzdensky, A.B. The Expression and Localization of Histone Acetyltransferases HAT1 and PCAF in Neurons and Astrocytes of the Photothrombotic Stroke-Induced Penumbra in the Rat Brain Cortex. Mol Neurobiol 57, 3219–3227 (2020). https://doi.org/10.1007/s12035-020-01959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01959-6

Keywords

Navigation