Skip to main content

Advertisement

Log in

Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Synthetic biology breakthroughs have facilitated genetic circuit engineering to program cells through novel biological functions, dynamic gene expressions, as well as logic controls. SynBio can also participate in the rapid development of new treatments required for the human lifestyle. Moreover, these technologies are applied in the development of innovative therapeutic, diagnostic, as well as discovery-related methods within a wide range of cellular and molecular applications. In the present review study, SynBio applications in various cellular and molecular fields such as novel strategies for cancer therapy, biosensing, metabolic engineering, protein engineering, and tissue engineering were highlighted and summarized. The major safety and regulatory concerns about synthetic biology will be the environmental release, legal concerns, and risks of the engineered organisms. The final sections focused on limitations to SynBio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333(6047):1244–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmidt M (2012) Synthetic biology: industrial and environmental applications. Wiley, Weinheim

    Google Scholar 

  3. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The vienna RNA websuite. Nucleic Acids Res 36(suppl_2):W70–W74

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald IC, Deans TL (2016) Tools and applications in synthetic biology. Adv Drug Deliv Rev 105:20–34

    CAS  PubMed  Google Scholar 

  6. Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15(2):95

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues LR, Kluskens LD (2011) Synthetic biology & bioinformatics: prospects in the cancer arena. Comput Biol Appl Bioinform 8:159–186

    Google Scholar 

  8. Shiue E, Prather KL (2012) Synthetic biology devices as tools for metabolic engineering. Biochem Eng J 65:82–89

    CAS  Google Scholar 

  9. Chen YY, Galloway KE, Smolke CD (2012) Synthetic biology: advancing biological frontiers by building synthetic systems. Genome Biol 13(2):240

    PubMed  PubMed Central  Google Scholar 

  10. Hermsen R, Tans S, Ten Wolde PR (2006) Transcriptional regulation by competing transcription factor modules. PLoS Comput Biol 2(12):e164

    PubMed  PubMed Central  Google Scholar 

  11. Singh V (2014) Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst Synth Biol 8(4):271–282

    PubMed  PubMed Central  Google Scholar 

  12. Trump BD (2017) Synthetic biology regulation and governance: lessons from TAPIC for the United States, European Union, and Singapore. Health Policy 121(11):1139–1146

    PubMed  Google Scholar 

  13. Dobrin A, Saxena P, Fussenegger M (2015) Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol 8(4):409–430

    Google Scholar 

  14. Dalchau N, Smith MJ, Martin S, Brown JR, Emmott S, Phillips A (2012) Towards the rational design of synthetic cells with prescribed population dynamics. J R Soc Interface 9(76):2883–2898

    PubMed  PubMed Central  Google Scholar 

  15. Brenner MJ, Cho JH, Wong NM, Wong WW (2018) Synthetic biology: immunotherapy by design. Annu Rev Biomed Eng 20:95–118

    CAS  PubMed  Google Scholar 

  16. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25(24):2559–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chakravarti D, Wong WW (2015) Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol 33(8):449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20):6106–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71

    CAS  PubMed  Google Scholar 

  21. Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM et al (2014) T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Can Res 74(1):93–103

    CAS  Google Scholar 

  22. Kojima R, Scheller L, Fussenegger M (2018) Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation. Nat Chem Biol 14(1):42

    CAS  PubMed  Google Scholar 

  23. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tastanova A, Folcher M, Müller M, Camenisch G, Ponti A, Horn T et al (2018) Synthetic biology-based cellular biomedical tattoo for detection of hypercalcemia associated with cancer. Scie Transl Med 10(437):eaap8562

    Google Scholar 

  25. Chen Z, He A, Liu Y, Huang W, Cai Z (2016) Recent development on synthetic biological devices treating bladder cancer. Synth Syst Biotechnol 1(4):216–220

    PubMed  PubMed Central  Google Scholar 

  26. Foo JL, Ching CB, Chang MW, Leong SSJ (2012) The imminent role of protein engineering in synthetic biology. Biotechnol Adv 30(3):541–549

    CAS  PubMed  Google Scholar 

  27. Ying B-W, Taguchi H, Kondo M, Ueda T (2005) Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides. J Biol Chem 280(12):12035–12040

    CAS  PubMed  Google Scholar 

  28. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP et al (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122(2):209–220

    CAS  PubMed  Google Scholar 

  29. Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS (2002) Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111(7):1027–1039

    CAS  PubMed  Google Scholar 

  30. Kumar V, Punetha A, Sundar D, Chaudhuri TK (2012) In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL. BMC genomics. BioMed Central, London

    Google Scholar 

  31. Gainza-Cirauqui P, Correia BE (2018) Computational protein design—the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol 52:145–152

    CAS  PubMed  Google Scholar 

  32. Liu DS, Nivón LG, Richter F, Goldman PJ, Deerinck TJ, Yao JZ et al (2014) Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. Proc Natl Acad Sci 111(43):E4551–E4559

    CAS  PubMed  Google Scholar 

  33. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC (2015) Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci 112(3):749–754

    CAS  PubMed  Google Scholar 

  34. Erb TJ, Jones PR, Bar-Even A (2017) Synthetic metabolism: metabolic engineering meets enzyme design. Curr Opin Chem Biol 37:56–62

    CAS  PubMed  Google Scholar 

  35. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195

    CAS  PubMed  Google Scholar 

  36. Brekasis D, Paget MS (2003) A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3 (2). EMBO J 22(18):4856–4865

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Weber W, Link N, Fussenegger M (2006) A genetic redox sensor for mammalian cells. Metab Eng 8(3):273–280

    CAS  PubMed  Google Scholar 

  38. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Courbet A, Renard E, Molina F (2016) Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol Med 8(9):987–991

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhatia P, Chugh A (2013) Synthetic biology based biosensors and the emerging governance issues. Curr Synthetic Syst Biol. https://doi.org/10.4172/2332-0737.1000108

    Article  Google Scholar 

  41. Wei T, Zhang C, Xu X, Hanna M, Zhang X, Wang Y et al (2013) Construction and evaluation of two biosensors based on yeast transcriptional response to genotoxic chemicals. Biosens Bioelectron 44:138–145

    PubMed  Google Scholar 

  42. Morris MC (2013) Fluorescent biosensors—probing protein kinase function in cancer and drug discovery. Biochimica et Biophysica Acta (BBA) 1834(7):1387–1395

    CAS  Google Scholar 

  43. Braff D, Shis D, Collins JJ (2016) Synthetic biology platform technologies for antimicrobial applications. Adv Drug Deliv Rev 105:35–43

    CAS  PubMed  Google Scholar 

  44. Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci 112(47):14429–14435

    CAS  PubMed  Google Scholar 

  45. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30(5):1185–1194

    CAS  PubMed  Google Scholar 

  46. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17(4):373–380

    CAS  PubMed  Google Scholar 

  47. Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC (2014) The emerging age of cell-free synthetic biology. FEBS Lett 588(17):2755–2761

    CAS  PubMed  Google Scholar 

  48. Sun ZZ, Hayes CA, Shin J, Caschera F, Murray RM, Noireaux V (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. JoVE 79:e50762

    Google Scholar 

  49. Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2013) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397

    PubMed  Google Scholar 

  50. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P et al (2014) Based synthetic gene networks. Cell 159(4):940–954

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carroll MW, Matthews DA, Hiscox JA, Elmore MJ, Pollakis G, Rambaut A et al (2015) Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature 524(7563):97

    CAS  PubMed  Google Scholar 

  52. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans A, Ratcliffe E (2017) Rising influence of synthetic biology in regenerative medicine. Eng Biol 1(1):24–29

    Google Scholar 

  54. Davies JA, Cachat E (2016) Synthetic biology meets tissue engineering. Biochem Soc Trans 44(3):696–701

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye H, Daoud-El Baba M, Peng R-W, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332(6037):1565–1568

    CAS  PubMed  Google Scholar 

  56. Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7(5):544–551

    CAS  PubMed  Google Scholar 

  57. Papapostolou D, Howorka S (2009) Engineering and exploiting protein assemblies in synthetic biology. Mol BioSyst 5(7):723–732

    CAS  PubMed  Google Scholar 

  58. Cachat E, Davies J (2011) Application of synthetic biology to regenerative medicine. J Bioeng Biomed Sci 2:003

    Google Scholar 

  59. Davies J (2013) Mechanisms of morphogenesis. Academic Press, New York

    Google Scholar 

  60. Davies JA (2008) Synthetic morphology: prospects for engineered, self-constructing anatomies. J Anat 212(6):707–719

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2):339–350

    CAS  PubMed  Google Scholar 

  62. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410

    CAS  PubMed  Google Scholar 

  63. Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M et al (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11(1):185

    PubMed  PubMed Central  Google Scholar 

  64. Kindsmüller K, Wagner R (2011) Synthetic biology: impact on the design of innovative vaccines. Hum Vaccines 7(6):658–662

    Google Scholar 

  65. Jain A, Bhatia P, Chugh A (2012) Microbial synthetic biology for human therapeutics. Syst Synth Biol 6(1–2):9–22

    PubMed  PubMed Central  Google Scholar 

  66. Trump BD, Cegan JC, Wells E, Keisler J, Linkov I (2018) A critical juncture for synthetic biology. EMBO Rep 19(7):e46153

    PubMed  PubMed Central  Google Scholar 

  67. Zakeri B, Carr PA (2015) The limits of synthetic biology. Trends Biotechnol 33(2):57–58

    CAS  PubMed  Google Scholar 

  68. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3(1):158

    PubMed  PubMed Central  Google Scholar 

  69. Bhutkar A (2005) Synthetic biology: navigating the challenges ahead. J Biolaw Bus 8(2):19–29

    PubMed  Google Scholar 

  70. Epstein MM, Vermeire T (2016) Scientific opinion on risk assessment of synthetic biology. Trends Biotechnol 34(8):601–603

    CAS  PubMed  Google Scholar 

  71. Wang F, Zhang W (2019) Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. J Biosaf Biosecur. https://doi.org/10.1016/j.jobb.2018.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ehni H-J (2008) Dual use and the ethical responsibility of scientists. Arch Immunol Ther Exp 56(3):147

    Google Scholar 

  73. Kuhlau F, Eriksson S, Evers K, Höglund AT (2008) Taking due care: moral obligations in dual use research. Bioethics 22(9):477–487

    PubMed  Google Scholar 

  74. Nordmann BD (2010) Issues in biosecurity and biosafety. Int J Antimicrob Agents 36:S66–S69

    CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors collected and analyzed relevant literature, then drafted the manuscript, and critically revised the manuscript for content, finally read and approved the final manuscript.

Corresponding author

Correspondence to Ali Shojaeian.

Ethics declarations

Conflicts of interest

The authors report that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, M., Mobini, GR., Abiri, A. et al. Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective. Mol Biol Rep 47, 6207–6216 (2020). https://doi.org/10.1007/s11033-020-05565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05565-6

Keywords

Navigation